GETTING STARTED
WITH BATCH (TOPS-10)

AA-D303A-TB
August 1978

This document describes to the reader how to
get started with the TOPS-10 GALAXY Batch System.

OPERATING SYSTEM: TOPS-10 Version 6.03A

SOFTWARE VERSION: GALAXY Version 3

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright () 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem=-10 MASSBUS
DEC : DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TOPS-10
DDT LAB-8 TOPS-20
DECCOMM DECSYSTEM-20 TYPESET-8

TYPESET-11

CONTENTS

Page
PREFACE v
REFERENCES vi
CONVENTIONS USED IN THIS MANUAL vii
SYMBOLS USED IN THIS MANUAL viii
GLOSSARY Glossary-1
CHAPTER 1 INTRODUCTION 1-1
1.1 WHAT BATCH IS 1-1
1.2 HOW TO USE BATCH 1-2
1.2.1 Running Your Job 1-2
1.2.2 Receiving Your Output 1-3
1.2.3 Recovering from Errors 1-3
1.3 SUMMARY 1-3
CHAPTER 2 ENTERING A BATCH JOB FROM A TERMINAL 2-1
2.1 CREATING THE CONTROL FILE 2-2
2.1.1 Format of Lines in the Control File 2-3
2.2 SUBMITTING THE JOB TO BATCH 2-5
2.2.1 General Switches 2-6
2.2.2 File-Control Switches 2-7
2.2.3 Examples of Submitting Jobs 2-7
2.3 BATCH COMMANDS 2-8
2.3.1 The .IF Command 2-9
2.3.2 The .ERROR Command 2-9
2.3.3 The .NOERROR Command 2-10
2.3.4 The .GOTO Command 2-11
2.3.5 The .BACKTO Command 2-12
2.4 SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE 2-12
CHAPTER 3 ENTERING A BATCH JOB FROM CARDS * 3-1
3.1 BATCH CONTROL CARD FORMAT CONVENTIONS 3-2
3.2 BATCH CONTROL CARD COMMANDS 3-2
3.2.1 Starting a Job - The $JOB Card 3-2
3.2.2 Identifying Yourself - The $PASSWORD Card 3-5
3.2.3 Ending a Job - The SEOJ Card 3-5
3.2.4 Creating a File - The $CREATE Card 3-5
3.2.5 Compiling a Program - The $-language Card 3-7
3.2.6 Executing a Program - The SEXECUTE Card 3-9
3.2.7 Executing a Program with Data - The $DATA

Card

iii

w
[
[
o

CHAPTER

CHAPTER

INDEX

FIGURE

>

Ul w

wWwwwww

UL dwww

w

>

Lo
.« .

s 0

[I |
[0 SRR SN g

{ I T I I |
WKk~

L OVl O

N =

N

CONTENTS (CONT.)

Reading from a Spooled Card-Reader File
Naming Data Files on the $DATA Card
End of Data Input - The S$EOD Card
System Commands - The $TOPS10 Card
Error Recovery - The S$ERROR and $NOERROR
Cards
SETTING UP YOUR CARD DECK
PUTTING COMMANDS INTO THE CONTROL FILE FROM
CARDS
Card Decks for Programs that Do Not Have
Special Control Cards
SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE

INTERPRETING YOUR PRINTED OUTPUT

OUTPUT FROM YOUR JOB

BATCH OUTPUT

OTHER PRINTED OUTPUT

SAMPLE BATCH OUTPUT
Sample OQutput of a Job from a Terminal
Sample Output of a Job on Cards

Page
3-12
3-14
3-16
3-16

3-18
3-20

3-21

3-23

EXAMPLES OF COMMON TASKS WITH BATCH 5-1
USING THE TERMINAL TO ENTER JOBS 5-1
USING CARDS TO ENTER JOBS 5-10
Index-1
FIGURES
Batch Card Deck Using TOPS-10 Commands 3-18
Typical Program Card Deck 3-20
Use of Control Cards to Compare Two Card Decks 3-22
BASIC Program Card Deck with Integral Data 3-24
BASIC Program Card Deck with Provisions
for Terminal Data Input 3-25
Card Deck with Error Statement 3-26
Card Deck with Error Recovery Program 3-23
Card Deck Using GOTO Statement 3-30
COBOL Print Program Card Deck 4-4
ALGOL Job Entry Card Deck 5-10
BASIC Job Entry and Run Card Deck 5-12
FORTRAN Card Deck That Prevents
Execution on Error 5-14
COBOL Program Card Deck Using Data From
Magnetic Tape 5-18

iv

PREFACE

Getting Started With Batch (TOPS-10) has been written for you, if you
have a rudimentary knowledge of Batch processing or are familiar with
at least one of the following:

1. a programming language

2. the timesharing services of the DECsystem-10

3. card processing on other systems

HOW TO USE THIS MANUAL

If you input your jobs through interactive terminals, the following
chapters are recommended:

Chapter 1 Introduction

Chapter 2 Entering a Batch Job from a Terminal

Chapter 4 Interpreting Your Printed Output, Section 4.4.1
Chapter 5 Using the Terminal to Enter Jobs, Section 5.1

If you input your Jjobs from cards, the following chapters are
recommended:

Chapter 1 Introduction

Chapter 3 Entering a Batch Job from Cards

Chapter 4 Interpreting Your Printed Output, Section 4.4.2
Chapter 5 Using Cards to Enter Jobs, Section 5.2

REFERENCES

Not all of the commands and card formats for Batch processing are
described in this manual. If you want to know more about Batch you
can refer to the DECsystem-10 (TOPS-10) Batch Reference Manual. In
addition, all components of Batch processing are referred to as Batch
in this manual. For a complete description of these components, refer
to the DECsystem-10 (TOPS-10) Batch Reference Manual.

An elementary description of the basic TOPS-10 system commands can be
found in the documents Getting Started With DECsystem-10 (TOPS-10) and
Getting Started With TOPS-10 Commands. The DECsystem-10 (TOPS-10)
Operating System Commands Manual contains additional descriptions of
the TOPS-10 commands available to you.

Error messages that occur while Batch is processing but which are not
defined in this manual are explained in applicable system manuals.
For example, if your FORTRAN program fails to compile successfully,
the error message you receive from the FORTRAN compiler can be found
in the FORTRAN-10 Programmer's Reference Manual. For errors that may
occur in a Batch process but not in the source program being used, you
can refer to the DECsystem-10 (TOPS-10) Batch Reference Manual.

vi

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this
manual.

dd-mmm-yy hh:mm A set of alphanumeric characters that indicates
date and time; e.g., 2-APR-78 15:30. Time of day
is represented by a 24-hour notation; 15:30 means
3:30 P.M.

filename.ext The filename and file extension of a file, The
filename <can be 1 to 6 alphanumeric characters in
length and the file extension can be 1 to 3
alphanumeric characters in length. The file
extension may be optional. 1If present, the file
extension must be separated from the filename with
a period. Refer to the Glossary for the
definitions of these terms.

hh:mm:ss A set of numbers representing time in the form
hours:minutes:seconds. - Leading zeros can be
omitted, but colons must be present between two
numbers. For example, 5:35:20 means 5 hours, 35
minutes, and 20 seconds. :

jobname The name that 1is assigned to a job. It can
contain up to six characters. Refer to the
Glossary for the definition of a job.

n A number that specifies either a required number
or an amount of things such as cards or
line-printer pages. This number can contain as
many digits as are necessary to specify the amount
required, e.g., 5, 13, 219, etc.

[proj,progl The user number assigned to each wuser, commonly
called a project-programmer number. The two
numbers that make up the project-programmer number
must be separated by a comma. Refer to the
Glossary for the definition of a
project-programmer number.

t A number representing an amount of time, usually
in minutes. This number can contain as many
digits as are necessary to specify the amount of
time required, e.g., 7, 40, 120, etc.

X An alphanumeric character.

vii

SYMBOLS USED IN THIS MANUAL

Symbol Meaning

.TYPE Anything you type on your terminal appears in red.
Anything the system prints on your terminal appears
in black.

Press the key labeled RETURN or CR.

Press the key labeled DELETE or RUBOUT.

s Press the key labeled ESC, ESCAPE, ALT, or PRE.

Press the key labeled TAB.

GO Press the space bar once.

—

]
)

—

Brackets enclose all optional arguments.

Parentheses enclose the name or value of an argument.

viii

CHAPTER 1

INTRODUCTION

1.1 WHAT BATCH IS

Many data processing jobs may require long running times and may make
few demands of you. Ideally these jobs should be run in your absence
when the computer is not busy with other tasks. This ideal is met by
the TOPS-10 Batch system.

Batch is a group of programs that allows you to submit a job to the
TOPS-10 system on a leave~it basis. (Refer to the DECsystem-10
(TOPS-10) " Batch Reference Manual for a complete description of
programs that constitute the Batch system.) You may build and submit
your job in one of two ways:

1. By entering your data directly to an interactive computer
system by means of a timesharing.terminal.

2. By entering your data from punched-cards to the interactive
system. The cards are given to an operator who, at an
appropriate time in his schedule, enters them into the
computer through a card reader.

One advantage of Batch processing with an interactive system 1is that
the interactive capabilities may be employed to greatly reduce the
amount of time required to prepare the job for entry. By wusing a
terminal to enter and edit the program items and data to be processed,
you can bypass the tedious chore of preparing card decks. However, if
desired, you can prepare traditional card decks by employing the
punched card facilities of the system. In either case, the
information to be entered is prepared as if it were to be processed as
a normal job from an interactive terminal. The only added requirement
is that special commands are entered with the job to direct the system
in your absence. 1In other words, you anticipcte the questions the
system normally asks and you answer them when you enter the
interactive job.

After preparing the job, you are free to leave the system. Upon
accepting the job, the system classifies it in terms of size, running
time, the need for peripherals, etc. This classification is used as
the basis for determining when the job is to be run. Large jobs may,
therefore, be set aside until smaller or more urgent jobs are
finished.

INTRODUCTION

some of the jobs that are commonly processed through the TOPS~-10 Batch
system are those that:

1. are freguently run for production

2. are large and long running

3. require large amounts of data

4. need no actions by you when the jobs are running

Batch allows you to submit your job to the computer through either a
card deck given to an operator or a timesharing terminal, and to
receive your output from the operator when the job has finished.
Output is never returned to your timesharing terminal even if your job
is entered from one. Instead, it is sent to a peripheral device
(normally the line printer) at the computer site and returned to you
in the manner designated by the installation manager.

1.2 HOW TO USE BATCH

To use the Batch system to process your job, you must create a-control
file. A control file consists of various commands that tell the
TOPS-10 system what you want to process. The control file commands
can be created as a disk file or as card input and can consist of:

1. System commands (see the DECsystem-10 (TOPS-10) Operating
System Commands Manual),

2. System program commands to system programs, and
3. Batch commands (see Chapters 2 and 3).

These commands, when submitted to the operating system, must be in a
particular order so that your Batch job will execute correctly.

The steps that you must take to create a control file from a
timesharing terminal are described in Chapter 2. The steps to take to
create a control file from cards are described in Chapter 3.

1.2.1 Running Your Job

After you submit the job, it waits in a queue with other Jjobs until
Batch schedules it to run under guidelines established by the
installation manager. Several factors affect how long your job waits
in the queue, for example, its estimated execution time and the
priority of your job compared with other waiting jobs.

When the job is started, Batch reads the control file to determine
what actions are necessary to complete the job. For example, if there
are commands to the system programs, Batch issues the commands to
those programs. Any output produced as a result of those commands is
stored in a log file for listing later. With adequate planning, the
control file can also provide for corrective actions in the event of
errors.

INTRODUCTION

As each step in the control file is performed, Batch records it in a
log file. For example, if a system command such as COMPILE is
executed, Batch passes it to the system and writes it in the log file.
The system response is also written in the log file. Batch writes in
the log file any response from your job that would have been written
on the terminal if the job had run interactively.

1.2.2 Receiving Your Output

Your program output will be returned to you in the form that you
specified by the commands in your control file. This is normally the
line-printer listing, but may also be output on magnetic tape, disk,
DECtape, or cards. When your output is directed to the line printer,
you may specify the approximate number of pages that you require (to
help Batch restrain runaway programs).

If your Batch job is submitted through a timesharing terminal, the log
file is written and saved on disk in your directory and printed on the
line printer. If your Batch job is submitted on card input, the log
file is written on disk in your directory, printed on the line
printer, and then deleted from your directory.

1.2.3 Recovering from Errors

If an error occurs in your job, either within a program that is
executing or within the control file, Batch writes the error message
in the log file and usually terminates the job. You can, however,
include commands in the control file to direct Batch to branch to
recovery sequences in the event of an error and thereby allow
completion of the job. The effectiveness of error recovery is
dependent on your ability to predict potential trouble spots within
the program or within commands used in the control file. (Refer to
the DECsystem-10 (TOPS-10) Batch Reference Manual for detailed
descriptions on error recovery for Batch jobs.)

1.3 SUMMARY

The steps that you must perform to enter a job to the computer through
Batch are as follows:

1. Create a control file either on cards or from a terminal.

2. Submit the job to Batch, either indirectly via the operator
(for a card job) or directly from a terminal.

3. Obtain and examine the log file listing and the job output to
determine if the desired results were obtained.

Sample jobs run through Batch from cards and from a terminal are shown
in Chapter 5.

CHAPTER 2

ENTERING A BATCH JOB FROM A TERMINAL

When you submit a job to Batch from a timesharing terminal, you must
create a control file that Batch can use to run your job. The control
file contains all the commands that you would use to run your job if
you were running under timesharing. For example, if you wanted to
compile and execute a program called MYPROG.CBL, the typeout on a
timesharing terminal would appear as follows:

+COMFILE MYFROG.CRIL Crer) (Your request)
COROL.: MYPROG LMYFROG.CELD

(The system's reply)
EXIT

EXECUTE MYFROG.CRL Crer) (Your request)
LINK? LOADING
CLNKXCT MYFROG EXECUTION]
(The system's reply)
EXIT

*

To create a control file to tell Batch to run the same, you would
create the following:

508 ‘MYFILE WCTL
INFUTS: MYFILE.CTL
00100 JCOMFILE MYFROG.CEL D)
00200 JEXECUTE MYFROG,CEL(CrD)

00300 %
e Crer)

CDRSKCIMYFILE.CTLI]

*

When the job is run, the commands are passed to the system to be
executed., The commands and their replies from the system are written
in the log file so that the entire dialogue shown in the first example
above appears in the log file.

ENTERING A BATCH JOB FROM A TERMINAL

2.1 CREATING THE CONTROL FILE

To create a control file and submit it to Batch from a terminal, vyou
must perform the following steps:

1. LOGIN to the system as a timesharing user.
2. Create a control file on disk using SOS (or TECO).
3. Submit the job to Batch using the system command SUBMIT.

You can then wait for your output to be returned at the designated
place.

After you have logged into the system as you normally would to start a
timesharing 3job, you <can use SOS (or TECO) to create your control
file.

The control file <can contain TOPS-10 Monitor commands, program
commands, data that would normally be entered from a terminal, and
Batch commands. The Batch commands are described in Section 2.3.
What vyou write in the control file depends on what you wish your job
to accomplish. An example of a job that you can enter for Batch
processing is as follows:

1. Compile a program that is on disk.

2. Load and execute the program using data from a file already
on disk.

3. Print the output on the line printer.
4., Write the output into a disk file also.
5. Compile a second program.

6. Load and execute the second program using the data output
from the first program.

7. Print the output from the second program.

The control file that you would create for the preceding job would
appear as follows:

. 808‘ MYFILE.CTL

INPUT? MYFILE.CTL

00100 +COMPILE MYFROG.FOR/COMFILE)
00200 +EXECUTE MYFROG.FORCre)

00300 +COMFILE FROG2.FOR/COMFILE Crer)
00400 +EXECUTE FROG2.FOR Cre)

00500 ?

GO
XE GiD)

COSKCIMYFILE.CTL]

ENTERING A BATCH JOB FROM A TERMINAL

Include statements in your programs (rather than in the control file)
to read the data from the disk files and write the output to the
printer and the disk. The output to the line printer is written along
with your log file as part of the total output of your job.

If an error occurs in your job, Batch will not continue but will
terminate the job. To avoid having your job terminated because an
error occurs, you can specify error recovery in the control file using
special Batch commands. Error recovery is described in Section 2.4.

Any system command that you can use in a timesharing job can be used
in a Batch job with the following exceptions. The ATTACH and SET TIME
commands are illegal in a Batch job. If you include either of these
commands in your job, Batch will process the command and the monitor
will place an error message into your log file. Your Batch job will
terminate unless you specify error recovery.

Do not include a LOGIN command in your control file since Batch 1logs
the job for you. If you put in a LOGIN command, your job will be
terminated. 1In addition, you do not need to include a KJOB command.
Batch will 1log out your job automatically when it reaches the end of
your control file. '

2.1.1 Format of Lines in the Control File

Since you can put TOPS-10 monitor commands, program commands, and
Batch commands, as well as data, into the control file, you have to
tell Batch what kind of line it is reading. - Batch determines the line
it is reading as a command, data, or comment by the first nontab or
nonblank character. The first character in each line should be one of
the characters described below.

To put a system command or Batch command into your control file, you
must put a period (.) in the first column and follow it immediately
with the command.

To put a command string of a system program or user program into your
control file, put an asterisk (*) in column 1 and follow it
immediately with the command string. For the format of the command
string, refer to the manual for the specific program that you wish to
use.

If you want to include in the control file a command to a system
program that does not accept a carriage return as the end of the line,
e.g., DDT, you must substitute an equal sign (=) for the asterisk so
that Batch will suppress the carriage return at the end of the line.

To include data for your program in the control file, write it as you
would input data from a separate file. The asterisk (*) should always
be the first character before each line of data input. The asterisk
(*) tells Batch that this line is input data to your program.

Comments can also be included in the control file either as separate
lines or on lines containing other information. To include a comment
on a separate line, you must put an exclamation point (!) in column 1
and follow it with the comment. To add a comment to a line after your
data, you must precede the comment with an exclamation point (!).
Refer to the manual that describes the program you are using, as some
programs and their input do not accept comments preceded by the
exclamation point (!).

ENTERING A BATCH JOB FROM A TERMINAL

To include a CTRL/C in your control file, type an up-arrow and a C
("Cy. To 1include an ESCape (altmode), type an up-arrow and a left
square bracket ("[).

If you put in the first column of the 1line any special characters
other than those described, you may get unexpected results because
Batch interprets other special characters in special ways.

_The following example illustrates a control file, using some of the
characters described above, and the resulting log file. The example
uses the TOPS-10 FILCOM utility to compare two files.

!This batch job generates a FILCOM of two files.
!Run FILCOM and then give it a command.

.R FILCOM

*TTY:=FILE.QXT,FILE.TXT

*"C

08148307 BAJOB BATCON version 103(2207) running EXAMZ sequence 5902 in streanrm 1
00148¢07 BAFIL 1Inpur from DSKCIEXAMZ,CTL(27,5107)
081493107 BAFIL Output to DSKCIEXAM2,L0G(27,8107)
08148107 BASUM Job paranmeters
Time; 00305300 UNiqueiYES RestaptiNO DutputiLOG

08548107 MONTR
08148107 MONTR ,LDGIN 27/5107 /DEFER/SPOOLIALL/TIME;300/LUCATES26/NAMEI "BROWN,E"

00948107 USER JUB 42 RZ376B XL10 SYS#1026 TTY4S)
08148309 USER [LGNySP Other Jobs sare PPMN129)
08148309 USER 0848 01eAuUge’8 Tue

080148110 MONTR
08149310 MONTR
{Thig Bat¢h job generateg & FILCOM of tvo files,

{Run FILCOM and then @ive it a command,

08348310 MONTR LR FILCOM

08148310 USER

08348311 USER

083483111 USER ¢9TTYswFILE, TST,FILE,TXT

08148311 USER File 1) DSKCIFILE,TST(27,5107) Created; 0846 01eAygei1978
08148111 USER File 2) DSKCIFILE,TXT(27,5107) ecreatedt 0846 0lsAugel978@
DB148311 USER

08148111 USER 1)1 This file contains a speling error,
08348311 USER “ene
ngs48311 usrR 21 This file does not contain a spelling error,

08148311 USER [Y I T2 2]

09148311 USER

00148311 USER Stiles are difterent

08348311 UBER

08148311 USER senC

08148311 MONTR

08148311 MONTR ,KJpB/BATCH

nNgs48311 USER

08348111 USER [LGTAJL Anothelr job 18 still l109gedein under (27,%107]))
08148113 UsER JOb 42 User BROWN,E (27,%107)

08548113 USER LOGUedwotf TTYAS3 at 8148113 on jepuge?s
08148313 USER Runtimer 0100100, XC814, Connect timed 0300106
08148113 USEP Disk Readsi169, Writest?

81483114 LPDAT LPTSPL version 103(2421) RZ376B KL10 SYS#1026
f148144 LPDAT Job EXAMZ sequepnce #5902 on LPT261 AT jeAuge?d Bi48114

ENTERING A BATCH JOB FROM A TERMINAL

2.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you must
enter it into the Batch queue so that it can be run. All programs and
data that are to be processed when the job is run must be made up in
advance or be generated during the running of the job. You can have
them on magnetic tape, but if you do, you must include the TOPS~10
commands MOUNT and DISMOUNT in your control file so that the operator
will mount and dismount the tape(s) to be read. (Refer to Chapter 5
for examples of a control file with these commands.)

If your programs and data reside on an on-line disk, ‘you need not
include the MOUNT and DISMOUNT command as there is no action required
by the operator. :

You enter your job in Batch's queue by means of the TOPS-10 SUBMIT
command. This command has the form:

.SUBMIT jobname=control-filnam.ext/switches,1og—fi1nam.ext/switches

jobname - is the name that you give to your job. If
this name is omitted, the monitor uses the
name of the log file (log-filnam.ext).

control-filnam.ext is the name that you have given to the
control file you created. You can add a file
extension (.ext), but if you do not, Batch
will assume a file extension of .CTL.

log-filnam.ext is the name of the log file that Batch will
use. You can add a file extension (.ext),
but if you do not, Batch will assume a file
extension of .LOG.

You must specify the name of the control file. If the name of the log
file is omitted, its name will be taken from the name of the control
file.

/switches are switches to Batch to tell it how to
process your job and what your output will
look like. Most switches can appear anywhere
in the SUBMIT command string; however, a few
must be placed after the files to which they
pertain. The various kinds of switches are
described below.

Three categories of switches are available to you when you use the -
SUBMIT command to process your Batch job. These three categories are:

1. Queue-Operation switches,
2. General switches, and
3. File-Control switches.

Only one of the Queue-Operation switches can be placed in the command
string because this category defines the type of queue request. The
switch used can appear anywhere in the command string. Refer to the
DECsystem-10 (TOPS-10) Batch Reference Manual and/or the DECsystem~10
(TOPS-10) Operating System Commands Manual for a complete 1list of
Queue-Operation switches in the SUBMIT command. '

ENTERING A BATCH JOB FROM A TERMINAL

2.2.1 General Switches

You use the general switches to define limits for your job. Such
limits as pages of output and the time that your job will run can be
specified as general switches. Each general switch can be specified
only once in a SUBMIT command. You can put a switch anywhere in the

command string.

/AFTER:hh:mm Switch

If you do not want Batch to run your job until after a certain time or
until after a certain number of minutes have elapsed since the job was
entered, you can include the /AFTER switch in the SUBMIT command
string. To run the job after a specified time of the day, you must
specify the time in the form hh:mm (for example, /AFTER:12:00 to run a
job after noon). To run the job after a given amount of time has
elapsed, specify the time 1in the form +hh :mm (for example,
/AFTER:+1:00 to run the job an hour from now). If you omit the
switch, Batch will schedule your job as it normally would using its
defaults. If you omit the colon and/or value, the monitor will
respond with an error message and terminate the SUBMIT command.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for your Jjob, you must
include the /PAGE switch in the SUBMIT command to indicate the
approximate number of pages that your job will print. If you include
the switch without the colon and a value, the monitor will assume that
you will print up to 2000 pages. If your output exceeds the number
that you specified in the /PAGE switch, the excess output will be lost
and the message ?LPTPLE Page Limit Exceeded will be printed.
However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central
processor time. Central processor (CPU) time is the amount of time
that your job runs, not the amount of time that it takes Batch to
process your job. If you need more than five minutes of CPU time, you
must include the /TIME switch in the SUBMIT command to indicate the
approximate amount of time that you will need. 1If you specify the
switch without the colon and a value, Batch will assume that you need
one hour of CPU time. If you do not specify enough time, Batch will
terminate your job whén the time is up.

The value in the /TIME switch is given in the form hh:mm:ss
(hours:minutes:seconds) . If you specify only one number, Batch
assumes that you mean seconds. Two numbers separated by a colon are
assumed to mean minutes and seconds. All three numbers, separated by
colons, mean hours, minutes, and seconds. For example:

/TIME:25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 means 1 hour and 25 minutes and no seconds

ENTERING A BATCH JOB FROM A TERMINAL

2.2.2 File-Control Switches

File-control switches allow you to specify parameters for individual
files in the SUBMIT command. The control file can receive a special
parameter, while the log file does not, and vice versa. If you place
a file-control switch before the two filenames in the SUBMIT command,
the switch applies to both files in the request. If you place the
switch after one of the files in the command, it refers only to that
file.

The switches, and the assumptions made if they or their values are
omitted, are all subject to change by each installation. Check with
the installation where you run your jobs to find out what differences
exist between the values described here and those at the installation.
Additional switches available for use with the SUBMIT command are
defined 1in the DECsystem-10 (TOPS-10) Batch Reference Manual and the
DECsystem-10 (TOPS-10) Operating System Commands Manual.

2.2.3 Examples of Submitting Jobs

The following are sample jobs entered to Batch by means of the SUBMIT
command.

Example 1:

This control file consists of commands to compile FORTRAN
program, print a listing, and execute it.

.SOS‘MYFILE.CTLG‘E

INFUTS MYFILE.CTL

00100 JCOMFILE MYFROG.FOR/LIST/COMPILE()
00200 VEXECUTE MYFROG.FOR(eD)

00300 $

(@)
% E (RET
COSKCIMYFILE.CTL

*

After the control file to compile and execute the FORTRAN program
has been created and saved, you must submit the job to Batch.

JSUBMIT MYFILE.CTLGED

When the monitor reads this SUBMIT command, it assumes the
following:

1. The control filename and type are MYFILE.CTL.
2. The name of the job is MYFILE.
3. The log file will be named MYFILE.LOG.

4. Both the control file and the log file will be saved in vyour
disk area.

ENTERING A BATCH JOB FROM A TERMINAL

5. 200 is the maximum number of pages to be printed (/PAGE:200).
6. The maximum amount of CPU time is 5 minutes (/TIME:5:00).
Example 2:

The next example shows the control file that was created at the
beginning of this chapter being submitte® to Batch,

.
|

JIYPE MYFILE.CTLGED
00100 .COMFILE MYFROG.FOR/COMFILE
00200 .EXECUTE MYFROG.FOR

00300 +COMFILE PROG2.FOR/COMFPILE
00400 +EXECUTE FROGZ2.FOR

After you have saved the control file, you can submit the job to
Batch.

)
. SUBMIT‘ MYJOR=MYFILE/TIME:20/FAGE:7S50/AFTER:103:00Cr)
When the monitor reads this request, it assumes the following:
1. The name of the job is MYJOB.
2. The name of the control file is MYFILE.CTL.
3. The log file will be named MYFILE.LOG.

4. The log file will be left in your disk area after it |is
printed.

5. The control file will be left in your disk area.

6. 750 is the maximum number of pages that can be printed
(/PAGE:750) .

7. The maximum amount of CPU time that the job can wuse is 20
seconds (/TIME:20).

8. The job will be processed only after 10:00 A.M.

If you made an error in the SUBMIT command when you submitted either
of these jobs, the monitor will type an error message on your terminal
to explain your error so that you can correct it.

2.3 BATCH COMMANDS

You can write certain Batch commands in the control file to tell Batch
how to ©process vyour control file. Each of these commands must be
preceded by a period (.) so that Batch will recognize 1it. The most
commonly used Batch commands are described in the following sections,
but not all Batch commands are described here. For a description of
all commands, refer to the DECsystem-10 (TOPS-10) Batch Reference
Manual.

ENTERING A BATCH JOB FROM A TERMINAL

2.3.1 The .IF Command

You can include the .IF command in your control file to specify an
error-recovery procedure to Batch or to specify normal processing if
an error does not occur. The .IF statement has the forms:

.IF (ERROR) statement (The parentheses must be included.)
.IF (NOERROR) statement (The parentheses must be included.)
where
statement éstahcommand to the system, to a program, or to
atch,

An example of the .IF (ERROR) command follows:

!DO A DIRECTORY IF AN ERROR OCCURS
.IF (ERROR) .DIRECT/ALLOC

.
-

An example of the .IF (NOERROR) command follows:

!IF NO ERROR OCCURS, GIVE A SECOND LINE OF INPUT
.IF (NOERROR) *FILE.SCM=A.TXT,B.TXT

The .IF command can be used in two ways as shown in its two forms.
You <can include the .IF (ERROR) command in your control file at the
place where you suspect an error may occur. The .IF (ERROR) command
must be the next command in your control file (that is, the next line
which begins with a period (.)) after an error occurs; otherwise,
Batch will terminate your job. In the .IF (ERROR) command, you direct
Batch to either go back or forward in your control file to find a line
that will perform some task for you or that will direct the system or
any other program to perform some task for you.

You can use the .IF (NOERROR) command to direct Batch or the system to
perform tasks for you when an error does not occur at the point in
your control file where you place the .IF (NOERROR) command. Thus, if
you expect that an error will occur in your program, you can include
an .IF (NOERROR) command to direct Batch in case the error does not
occur, and then put the error-processing lines immediately following
the command. Refer to Section 2.4 for more examples of wusing .IF
(NOERROR) and .IF (ERROR).

If an error occurs and Batch does not find an .IF command as the next
command line in the control file, Batch terminates the job.

2.3.2 The .ERROR Command

With the .ERROR command, you can specify to Batch the character that
you wish to be recognized as the beginning of an error message.
Normally, when Batch reads a message that begins with a question mark
(?), it assumes a fatal error has occurred and terminates the job
unless you have specified error recovery (refer to Section 2.4). If
you wish Batch to recognize another character (in addition to the
question mark) as the beginning of a fatal error message, you must
specify the character in the .ERROR command. The character specified
may not be a <control <character, an exclamation point (!) or a
semicolon(;). The exclamation point is always interpreted as the

2-9

ENTERING A BATCH JOB FROM A TERMINAL

comment character and will not function as the error-signal character.
This command has the form:

.ERROR character
where
character : is a single ASCII character

1f you do not specify a character in the .ERROR command, Batch uses
only the standard error character, the question mark. When a line
that begins with the character you specify in the .ERROR command is
output to the Batch job by the system, a system program, Or is issued
by Batch itself, Batch treats the line as a fatal error and terminates
the job, exactly as it would if the line were preceded by a question
mark. Any messages preceded by other characters will not be
recognized by Batch as errors.

If you do not include the .ERROR command in your control file, Batch
will recognize only the question mark as the beginning character of a
fatal error message.

An example of the .ERROR command follows.

.ERROR %

.ERROR

In this example, you specify in the middle of the control file that
you want Batch to recognize the guestion mark (?) and the percent sign
() as the beginning character of a fatal error from that point in the
control file. Further on in the control file, you tell Batch to go
back to recognizing only the question mark as the beginning of a fatal
error message.

2.3.3 The .NOERROR Command

You can use the .NOERROR command to tell Batch to ignore all error
messages issued by the system, system programs, and Batch itself. The
.NOERROR command has the form:

.NOERROR

When Batch reads the .NOERROR command, it ignores any error messages
that would normally cause it to terminate your job. The only
exception is the message ?TIME LIMIT EXCEEDED. Batch will always
recognize this as an error message, give you an extra 10% of your
allotted time, and terminate your job.

You can use .NOERROR commands in conjunction with .ERROR commands in
the control file to control error reporting. For example, if you wish
to ignore errors at the beginning and end but not in the middle of the
control file, place .ERROR and .NOERROR commands at the appropriate
places in the control file. In addition, you can also specify which
messages must be treated as fatal errors.

ENTERING A BATCH JOB FROM A TERMINAL

.NOERROR

.ERROR %

.NOERROR

The first command tells Batch to ignore all errors in your job. The
second command tells Batch to recognize as errors any message that
starts with a question mark (?) or a percent sign (%). You change the
error reporting with the next command to tell Batch to go back to
recognizing only messages that begin with a question mark as fatal.
The second .NOERROR command tells Batch to ignore all error messages
again. If the ?TIME LIMIT EXCEEDED message is issued at any time,
Batch will print the message, extend the time by 10%, and then
terminate the job. .

2.3.4 The .GOTO Command
You can include the .GOTO command in your control file to direct Batch
to skip over lines in the control file to find a specific line. The
.GOTO command has the form:
.GOTO label
where
label is a one- to six-character alphanumeric 1label for a
statement. The 1line that contains the label must be
followed by two colons (::).
An example of the .GOTO command follows.

.GOTO ABC

ABC:: .DIRECT

You can use the .GOTO command as the statement in an .IF command
(refer to Section 2.3.1) to aid you in error processing. For example:

.

.IF (ERROR) .GOTO ABC
ABC::.TYPE MYPROG

2-11

ENTERING A BATCH JOB FROM A TERMINAL

Wwhen Batch encounters a .GOTO command in the control file, it searches
forward in the control file to find the label specified in the .GOTO
command. Batch then resumes processing of the control file at the
line which has the specified label. If the label is not found, Batch
will issue the message

? BTNCNF Could not find label XxXxXxx
and the job will be terminated.

If you do not include a .GOTO command in the control file, Batch reads
the control file sequentially from the first statement to the last.

2.3.5 The .BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the
control file for a line with a specified label. The .BACKTO command
has the form:

.BACKTO label
where

label is a one- to six-character alphanumeric label for a
statement. The 1line that contains the label must be
followed by two colons (::).

An example of the .BACKTO command follows.

ABC::.DIRECT

.BACKTO ABC

Normally, Batch reads the control file line by 1line and passes the
commands and data to the system and your program. When you put a
_BACKTO command into the control file, you tell Batch to interrupt the
normal reading sequence and to search back in the control file to find
a line containing the label specified in the .BACKTO command. The
.BACKTO command searches for the label you specified, starting from
the beginning of the file and ending at the place the command was
given. When the labeled line is reached, Batch executes the line and
continues from that point.

If Batch cannot find the labeled line, it terminates your job.

2.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you do not specify error recovery when an error occurs in your job,

Batch terminates the job. You can specify error recovery in the
control file by means of the Batch commands, especially the .IF Batch
command. If you wish to recover from errors while the job is

processing, you must put the .IF command at the point between programs
in the <control file where an error may occur. When an error occurs,
Batch skips over all lines in the control file until it encounters a
line beginning with a period (.). If this line contains an .IF

2-12

ENTERING A BATCH JOB FROM A TERMINAL

command, the .IF command is processed and the job continues. If this
line does not contain an .IF command, the job is terminated.
Therefore, if a Batch job is to recover from an error successfully,
the .IF command must be placed in the control file where the error is
expected to occur but before any other commands preceded by the .
character. Thus, if you have a program that you are not sure is error
free, you can include an .IF command to tell Batch what to do if an
error occurs, as shown in the following example.

.COMPILE MYPROG.FOR
.IF (ERROR) statement

.
.

In either the .IF (ERROR) or the .IF (NOERROR) command, you should
include a statement that tells Batch what to do. You can use any
monitor command or Batch command. The .GOTO and .BACKTO commands are
also commonly used for this purpose. Refer to Sections 2.3.4 and
2.3.5 for descriptions of these commands. Be sure, if you use .GOTO
or .BACKTO in the .IF command, that you supply a line in the control
file that has the label that you specified in the .GOTO or .BACKTO
command. If you wish to simply ignore the error without taking any
special action, you may use a comment as the statement.

Two sample jobs are shown below. The first shows the .IF (ERROR)
command and the .GOTO command to specify error recovery. The second
example shows the use of the .IF (NOERROR) and .GOTO commands.

If you have a program that you are not sure will compile without
errors, you can include another version of the same program in your
job (that hopefully will compile) and tell Batch to compile the second
program if the first has an error. You would write the control file
as follows,

.SOS‘MYFILE.CTL

INFUTS MYFILE.CTL

00100 JCOMFILE /COMFILE MYFROG.,FOR/LIST(RT)
00200 JIF (ERROR) .GOTO A

00300 JEXECUTE MYPROG.FORGe)

00400 .GOTO E(GeD)

00500 Ad¢!ICONTINUE G

00600 ,COMFILE /COMFILE FROG2.FOR/LISTGED
00700 +EXECUTE FROG2.FOR D)

00800 ¢ L ICONTINUE Cer)
00900 ?
XE G

COSKCIMYFILE.CTL
*

When the job is run, Batch reads the control file and passes commands
to the system. If an error occurs in the compilation of the first
program, Batch finds the .IF (ERROR) command and executes the .GOTO
command contained in it. The .GOTO command tells Batch to look for
the line labeled A::. Thus, Batch skips lines in the control file
until it finds label A and then passes commands to the batch job from
that point. If an error does not occur while compiling MYPROG, the
.GOTO A statement 1is not executed. Instead, MYPROG is executed and
then Batch skips to the line labeled B::.

2-13

ENTERING A BATCH JOB FROM A TERMINAL

A variation of the above procedure is shown below using the .IF
(NOERROR) command and the .GOTO command. The difference is that Batch
skips the .IF (NOERROR) command if an error does occur, and performs
it if an error does not occur. The following is the control file that
you would create.

)

+'S08 MYFILE.CTLCRD)

INFUT! MYFILE.CTL

00100 +COMFILE /COMFILE MYFROG.FOR/LIST(Rr)

00200 «IF (NOERROR) .GOTO ACun)

00300 «COMFILE /COMFILE FROG2.FOR/LIST G

00400 +EXECUTE FROG2.FOR o)

00500 LGOTO RGRiD

00600 AL ICONTINUEGeD)

00700 +EXECUTE MYFROG.FOR (G

00800 B ICONTINUE Cren)

00900 4
t
ESC

XEGiD)

COSKCIMYFILE.CTL]

When the job is run, Batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the .IF
(NOERROR) command and the .GOTO command are executed, Batch skips to
the 1line 1labeled A, which is a comment, and passes commands to the
Batch job from that point. The program MYPROG.FOR is executed and the
end of the job is reached. If an error occurs while compiling MYPROG,
Batch skips the .IF (NOERROR) command and continues reading the
control file. PROG2.FOR is compiled and then executed. Batch is then
told to go to the line labeled B, which is a comment line. The end of
the job follows.

The examples shown above illustrate only two ways that you can use the
.IF commands to specify error recovery in the control file. You can
use any of the Batch commands or any system command that you wish to
recover from errors in your job.

However, you do not have to attempt to recover from errors while your
job is running. You can correct your errors according to the error
messages in the log file when your job is returned to you, and then
run your job again. The log file is described in Chapter 4.

CHAPTER 3

ENTERING A BATCH JOB FROM CARDS

When you enter a job to Batch from card input, you must create a
control file on <cards that 1is somewhat similar to a control file
created on a timesharing terminal, but that contains some additional
Batch commands. The card control file must tell Batch to start your
job, the tasks or steps your job must take, and when to stop your
Batch job. The tasks or steps in your Batch job can consist of calls
to a system program, can create files on disk, and can recover from
errors.

Your control card input to Batch may contain any combination of
commands. These commands are in four groups as follows:

1. TOPS-10 system commands, which consist of commands in a
format similar to what you would issue for the same command
on a timesharing terminal. Examples of these commands are
.COPY, .DISMOUNT, .PRINT, and .RENAME.

2. System program commands, which consist of commands that
pertain to a system or user program. An example is the
command to the FILCOM program to specify files to be
compared.

3. Batch commands, as described in Chapter 2, Section 2.3,

4. Batch control card commands, some of which are listed below.

SJOB (See Section 3.2.1)
SPASSWORD (See Section 3.2.2)
SEQJ (See Section 3.2.3)
SCREATE (See Section 3.2.4)
$~-language (See Section 3.2.5)
SEXECUTE (See Section 3.2.6)
SDATA (See Section 3.2.7)
SEOD (See Section 3.2.8)
STOPS10 (See Section 3.2.9)
SERROR (See Section 3.2.10)
SNOERROR (See Section 3.2.10)

Not all of the available Batch control commands are 1listed
above and described in Section 3.2. Refer to the
DECsystem-10 (TOPS-10) Batch Reference Manual for a complete
description of all available Batch control card commands.

ENTERING A BATCH JOB FROM CARDS

3.1 BATCH CONTROL CARD FORMAT CONVENTIONS

The Batch control cards must contain a dollar sign ($) in column 1 and
a command that starts in column 2. The command must be followed by at
least one space, which can then be followed by other information.
(Refer to the individual description of each card for more information
about it.)

A card with a TOPS-10 system command must contain a period (.) 1in
column 1 followed immediately by the command. Any information that
follows the command is in the format shown for the command 1in the
DECsystem-10 (TOPS-10) Operating System Commands Manual. The S$TOPS10
Batch control card command must precede TOPS-10 system commands 1in
your card deck. (Refer to Section 3.2.9 for the format and
description of the $TOPS10 card.)

A card with a command to a system program must contain an asterisk (*)
in column 1 followed immediately by the command string.

Batch commands are formatted in the same manner as system commands;
that 1is, a period (.) 1s punched in column 1 and the command
immediately follows it. You must also place a $TOPS10 card before
Batch commands in the card deck to enable execution of these commands.

If you put any special characters other than those described above in
the first column of a card, you may get unexpected results because
Batch interprets other special characters in special ways.

If you have more information than will £fit on one card, insert a
hyphen (=) as the last nonspace character on the first card and
continue the information on the second card.

Comments can also be included either on separate cards or on cards

containing other information. If the entire card is to contain a
comment, the card should contain a dollar sign ($) in column 1 and . an
exclamation point (!) in column 2. The exclamation point (!) is

called the comment character. 1If the card contains a command followed
by a comment, only the exclamation point (!) should precede the
comment. If the comment is too long to be contained on a single card,
begin the next card with a dollar sign ($) in column 1 and the
exclamation point (!) in column 2 and then continue the comment.
Refer to the manual that describes the program you are using, as some
programs and their input do not accept comments preceded by the
exclamation point (!).

3.2 BATCH CONTROL CARD COMMANDS

Eleven Batch control card commands are described in the following
sections. Additional Batch control card commands are available and
can be referred to in the DECsystem-10 (TOPS-10) Batch Reference
Manual.

3.2.1 Starting a Job - The $JOB Card

The $JOB card is the first card in your card deck. The $JOB card
tells Batch whose 3job it is processing and, optionally, the name of
the job, and any constraints that you want to place on the job. When
Batch reads the $JOB card, it begins the log file for your job.

ENTERING A BATCH JOB FROM CARDS

The $JOB card has the form:

$JOB jobname [proj,prog)

[proj,prog] is the project-programmer number assigned to vyou
by the installation to allow you to gain access to
the DECsystem-10. The project-programmer number
(PPN) must be enclosed in either square brackets

([1), parentheses (()), or angle brackets (< >).
Square brackets can be obtained with a ¢ sign for
the left bracket and a ! sign for the right
bracket. Refer to Appendix B of the Hardware

Reference Manual for a description of several
kinds of keypunches.

/switches are optional switches to Batch to tell it the
constraints that you have placed on your job.
They are described below.

/AFTER:dd-mmm-yy hh:mm Switch

If you do not want Batch to run your job until after a certain time
and/or a certain day, you can include the /AFTER switch on your $JOB
card. The date and time are specified in the form dd-mmm-yy hh:mm
(e.g., 16-APR-78 17:15). If you omit this switch, Batch schedules
your job as it normally does; that is, Batch schedules your job based
on the time required and other parameters.

/AFTER:+hh:mm Switch

If you do not want Batch to run your job until after a certain amount
of time has elapsed since the job was entered, include this form of
the /AFTER switch on the $JOB card. The amount of time that the job
must wait after it has been entered is specified in the form +hh:mm
(e.g., +1:30). If this switch is not included, Batch will schedule
the job as it normally does.

/PAGES:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for vyour 3job, you must
include the /PAGES switch on the $JOB card to indicate the approximate
number of pages that your job will print. If your output exceeds
either the maximum that Batch allows or the number that you specified
in the /PAGES switch, the excess output will not be printed and the

3-3

ENTERING A BATCH JOB FROM CARDS

message ?LPTPLE Page Limit Exceeded will be written in the log file.
However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

NOTE

Do not arbitrarily enter a large PAGES
value as this may delay execution of
your Batch job.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central
processor (CPU) time. CPU time is the amount of time that your job
runs in memory, not the amount of time that it takes Batch to process
your job. If you need more than five minutes of CPU time, you must
include the /TIME switch on the $JOB card to indicate the approximate
amount of time that you will need. If you do not specify enough time,
Batch will terminate your job when the time is up. However, 1if you
specify a large amount of time, Batch may hold your job in the queue
until it can schedule a large amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss
(hours:minutes:seconds). If you specify only one number, Batch
assumes that you méan seconds. Two numbers separated by a colon (:)
are assumed to mean minutes and seconds. All three numbers separated
by colons mean hours, minutes, and seconds. For example:

/TIME: 25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 means 1 hour, 25 minutes, and no seconds

The following rules apply to all switches 1in the above list that
require a time and/or date to be specified:

When you specify the time of day (hh:mm:ss)

1. You must not omit the colon (:) or colons.
wWhen you specify a date (dd-mmm-yy)

1. You must not omit the hyphens.

2. You must specify both the day and the month as a minimum
requirement.

3. You can abbreviate the month to a minimum of three letters,
e.g., JUL for July.

4. If you omit the year, the current year will be used.

5. If you omit the time from a date specification, the time is
assumed to be midnight on the specified date. 1In the example
below a current date and time of 20 April, 1978, 10AM will
be assumed.

/AFTER:18:00 means 6 P.M. on April 20, 1978
/AFTER: 3-May means midnight on May 3, 1978
/AFTER:19-Apr 20:00 means 8 P.M on April 19, 1978

ENTERING A BATCH JOB FROM CARDS

3.2.2 1Identifying Yourself - The SPASSWORD Card

You put the password that has been assigned to you on the $PASSWORD
card to tell Batch that you are an authorized user of the system.

In conjunction with the $JOB card, the $PASSWORD card identifies you
to Batch and tells Batch to process your job. 1If you put a password
on the S$PASSWORD card that does not match the password stored in the
system for you, Batch will terminate your job. The $PASSWORD card
must be present and must immediately follow the $JOB card.

The SPASSWORD card has the form:

$PASSWORD password

is a 1- to 6-character password that is stored in
the system to identify you. There must be exactly
one space between the end of the card name
(SPASSWORD) and the first character of your

password.

password

3.2.3 Ending a Job - The $EOJ Card

You must put the $EOJ card at the end of the deck containing your
complete job to tell Batch that it has reached the end of your job.
If you omit the $EOJ card, an error message will be issued. However,
your Jjob will still be scheduled and may be processed if another job
follows it. The form of the $EOJ card is shown below.

$EOJ

3.2.4 Creating a File - The $CREATE Card

You can put the SCREATE card in front of any program, data, or other
set of 1information to make Batch copy the program, data, or
information into a disk file. 1If the appropriate switch is included,
Batch will also print this file on the line printer.

3-5

ENTERING A BATCH JOB FROM CARDS

The form of the S$CREATE card is:

$CREATE filename.ext/switches

filename.ext specifies the optional filename and file
extension you want Batch to put on the file it
creates for your program or data. If you omit
the filename and extension, Batch will create a
unique name for your file of the form CRxxxx,
where xxxx represents a unique name generated by

Batch,

/switches are switches to Batch to tell it how to read the
cards in your deck. The switches are described
below.

/WIDTH:n Switch

Normally, Batch reads 80 columns on every card in your deck. You can
make Batch stop reading at a specific column by means of the /WIDTH
switch, where you indicate the number of the column at which to stop.
Thus, if you have no information in the last 10 columns of each card
in your deck, you can tell Batch to read only up to column 70 by
specifying

/WIDTH:70
/SUPPRESS Switch

When Batch reads the cards in your deck, it normally copies everything
on the card up to column 80 (or up to any column you may specify with
the /WIDTH switch). However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

/PRINT Switch

The file currently being created on disk by Batch 1is 1listed on the
line printer.

ENTERING A BATCH JOB FROM CARDS

Examples
The simplest form of the S$CREATE card is:
SCREATE

This card causes Batch to copy your deck into a disk file and to
assign a unique name to it. All 80 columns of the cards are read and
trailing spaces are copied into the file. The file is not printed.

The following is an example of a $CREATE card.
$CREATE MYFILE.CDS/WIDTH:50/PRINT

The deck that follows this card is copied into a disk file named
MYFILE.CDS. When Batch reads the cards in the deck, it copies
trailing spaces into the file, reading up to 50 columns. The disk
file created from your cards will be printed on the line printer.

3.2.5 Compiling a Program - The $-language Card

The $-language card specifies the source program language of your
program on cards. It 1is placed 1in front of your program. The
$-language card may be any of the following:

1. $COBOL
2. SFORTRAN
3. $MACRO
4. S$SALGOL

The $-language card causes Batch to copy your source program into a
disk file and compile it. You may then execute your program by using
the SEXECUTE card (Section 3.2.6) or the S$DATA card (Section 3.2.7).
Optional information (/switches) may be included on the $-language
card to tell Batch how to read and compile your program,

When Batch copies your source program file onto disk, Batch assigns a
unigque filename for your program in the form of LNxxxx. Depending on
the type of $-language card, the appropriate file extension 1is also
assigned to this file. When your Batch job completes, the LNxxxx file
is deleted automatically.

ENTERING A BATCH JOB FROM CARDS

The $-language card has any of the following forms:

')
$ALGOL/switches $COBOL /switches
SFORTRAN/switches $MACRO/switches
_ J
/switches are switches to Batch to tell it how to read vyour

program and whether or not to request a
compilation listing when the program is compiled.
The switches can be put on the card in any order.
The following three switches may be used with any
of the $-language cards. Additional switches are
available and can be referenced .in the
DECsystem-10 (TOPS-10) Batch Reference Manual.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every <card of the source
program. You can make Batch stop reading at a specific column by
means of the /WIDTH switch. You indicate the number of a column at
which to stop. Thus, if you have no useful information in the last 10
columns of each card of your program, you can tell Batch to read only
up to column 70 by specifying

/WIDTH: 70

/NOLIST Switch

Normally, the $-language card tells Batch to ask the <compiler to
generate a compilation listing of your source program. The listing is
then printed as part of your job's output. If you do not want this
listing, you can include the /NOLIST switch on the $-language card to
stop generation of the listing.

ENTERING A BATCH JOB FROM CARDS

/SUPPRESS Switch

When Batch reads the cards of your source program it normally copies
everything on the card up to column 80 or any column you may specify
with the /WIDTH switch. However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

Examples

The simplest form of the $-language card is shown in the following
example using ALGOL.

SALGOL
This card causes Batch to copy your ALGOL card program into a disk
file. The cards in the program are read up to column 80 and trailing
spaces are not suppressed. A listing file 1is produced when the

program is compiled. The listing 1is written as part of the job's
output.

The following is an example of a SALGOL card with switches.
$ALGOL/NOLIST/SUPPRESS/WIDTH: 72

With this card, Batch copies your program onto disk and inserts a
COMPILE command into the control file. When the program is compiled,
no listing is produced. The cards in the program are read up to
column 72, and trailing spaces up to column 72 are not copied into the
file. :

3.2.6 Executing a Program - The S$EXECUTE Card

The SEXECUTE card is used to execute the program that has been
compiled using the $-language card. This card 1is used when the
program requires no data or uses data already existing on disk. The
form of the SEXECUTE card is shown below.

SEXECUTE/switch

/switch is a switch to Batch to tell it what to include in
the command it inserts in the control file.

ENTERING A BATCH JOB FROM CARDS
/MAP Switch

If you want a loader map to be generated and printed for you when your
program 1is run, you can specify the /MAP switch on the SEXECUTE card
to tell Batch to request one for you.

An SEXECUTE card following another S$EXECUTE card in the control file
without any intervening $-language cards causes the program executed
by the first EXECUTE card to be loaded and executed again.

3.2.7 Executing a Program with Data - The $DATA Card

The $DATA card is used when you want to execute a program that uses
data from cards. -~ The $DATA card must be in front of the input data
cards. When Batch reads the $DATA card, Batch copies the data cards
that follow it onto a spooled card-reader file and then inserts an
EXECUTE command into your control file to execute your program.

When your job is run, any programs are executed which were entered
with $-language <cards that came before the $DATA card. The spooled
card reader file becomes the input to the currently executing program,
and your program may reference this file by using the card reader as
the input device.

I1f your input control file contains more than one program and input
data, Batch will execute the first program with the input data, spool
the results to be printed, and then compile the second program when
Batch reads the second $-language card. Again, when Batch reads the
second S$DATA card, a spooled card-reader file 1is created for your
input data cards and an EXECUTE command is inserted in your control
file.

A $DATA card (with its associated card deck) followed by another S$DATA’
card (with its deck), without intervening $-language cards, causes the
program to be loaded and executed twice. The first deck 1is wused as
data on the first execution and the second deck is used as data on the
second execution.

If your data is included in the program or is already on disk (so that
you do not have cards with data on them), use the $EXECUTE card
(Section 3.2.6) to execute the program.

The form of the $DATA card is:

$DATA filename.ext/switches

ENTERING A BATCH JOB FROM CARDS

filename.ext

specifies an optional
extension for
3.2.7.1). If omitted, a

file is created. You
using the card reader

the input data file

and file
(see Section
spooled card-reader
may reference this file by
as the input device in the

filename

source program. If included, a disk file is
created, and you may reference this file by
using the disk as the input device.

/switches are switches to Batch to tell it how to read
your data cards. The switches are described
below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every
You can make Batch stop reading at a specific
/WIDTH switch, where you indicate the number of
stop. Thus, if you have no useful information
of each card of your data, you can tell Batch
column 70 by specifying

card of your data.
column by means of the
a column at which to
in the last 10 columns
to read only up to

/WIDTH:70

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything
on the card up to column 80 or up to any column you may specify with
the /WIDTH switch. However, if you do not want trailing spaces copied
(to save space on the disk, for example), you can tell Batch, by means
of the /SUPPRESS switch, not to copy any trailing spaces into the disk
file.

/MAP Switch

If you want a loader map to be generated and printed for you when your
program is run, you can specify the /MAP switch on the SDATA card to
tell Batch to request one for you.
Examples
The simplest form of the $DATA card is:
$DATA

This card causes Batch to copy your data into a spooled card-reader
file. A spooled card-reader file is a file that Batch creates on disk
so that, when your program reads from the card reader, that file 1is
read. All 80 columns of the cards are read and trailing spaces are
copied into the file.

The following example shows a S$SDATA card with switches.

$DATA MYDAT.DAT/WIDTH:72

ENTERING A BATCH JOB FROM CARDS

The data that follows this card is copied into a file named MYDAT.DAT
and an EXECUTE command is inserted into the control file. When Batch
reads the cards of the data, it reads only up to column 72 and copies
trailing spaces into the data file. To use the data in this file,
your program should reference file MYDAT.DAT on the disk.

3.2.7.1 Reading from a Spooled Card-Reader File - If you let Batch
assign a name to your data file, you will not know the name that your
data file will have; you should, therefore, assign your data file,
without a name, to the card reader. The following examples illustrate
how to do this.

NOTE

The $DATA card can be used for data of
programs written in ALGOL, COBOL,
FORTRAN, and MACRO. It can also be used
for programs that are in relocatable
binary form. However, data for BASIC
programs cannot be copied by means of
the SDATA card because BASIC programs
are not compiled and executed. For
BASIC programs, use the $CREATE card as
described in Section 3.2.4.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.

SDATA (in the control file)

ENTERING A BATCH JOB FROM CARDS
FORTRAN Example

To read your data from the card reader, you use the unit number 2 or
no unit number, as shown below.

$FORTRAN

READ (2,f), list

END
SDATA

SFORTRAN

READ £, list

END
SDATA

ENTERING A BATCH JOB FROM CARDS
ALGOL Example

In an ALGOL program, you assign the desired channel (signified by ¢)
to the card reader and select the desired channel. Do not explicitly
open the named file on the channel because the file does not have a
name that is known to you.

INPUT (c, "CDR")
SELECT INPUT (c)

$DATA

3.2.7.2 Naming Data Files on the $DATA Card - If you want to name
your data file on the $DATA card rather than letting Batch name it for
you, you must, in your program, assign that file to disk as shown 1in
the following examples.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".

The $DATA card would then appear as follows.

SDATA SALES.CDS

ENTERING A BATCH JOB FROM CARDS
FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN.
You can read from unit 1, which is the disk, in your program and use

the name FORO01.DAT as the filename on your $DATA card, as shown in the
following statements.

READ (1,f), list

$DATA FORO1.DAT

You can also tell FORTRAN to read from logical wunit 2, which is
normally the card reader, and assign unit 2 or the card reader (CDR)

to disk (DSK). You can use the name FOR02.DAT on the SDATA card in
this case. :

OPEN (UNIT=2,DEVICE='DSK')
READ (2,f), list

$TOPS10
.ASSIGN DSK CDR
SDATA FOR02.DAT

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the
following statements. You can assign your data to any channel
(signified by c) and you can give your data file any name as long as

the name that you use in your program is the same as that put on the
SDATA card.

ENTERING A BATCH JOB FROM CARDS

INPUT (c, "DSK")
SELECT INPUT (c)
OPENFILE (c, "MYDAT.DAT")

SDATA MYDAT.DAT

This is done to ensure that your program finds your data in the disk
file under the name that you have assigned to it.

3.2.8 End of Data Input - The $EOD Card

The $EOD card terminates the card input that was preceded by a
SCREATE, SDATA, or $-language card. .

The form of the $EOD card is:

$EOD

If the SEOD card does not follow the card input, Batch recognizes the
next card with a dollar sign ($) in column one as a new Batch command
and as the end of the card input; that is, an EOD card is assumed 1if
one is not present.

3.2.9 System Commands - The $TOPS10 Card

You can include system commands, commands to system or user programs,
and Batch commands in your deck by inserting a $TOPS10 card
immediately before these commands. The $TOPS10 card directs Batch to
copy all cards following it into the Batch control file. Therefore, a
single system command or Batch command or a group of consecutive
system and/or Batch commands must be preceded by a $TOPS10 card. The
copying process is terminated by the next control card in the deck.

ENTERING A BATCH JOB FROM CARDS

The form of the $TOPS10 card is:

$TOPS10/switches

/switches are switches to Batch to tell it how to read and
interpret your input.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your system or
Batch commands. You can make Batch stop reading at a specific column
by using the /WIDTH switch, where you indicate the column number at
which Batch 1is to stop reading. Thus, if you have no useful
information in the last 10 columns of each card, you can tell Batch to
read only up to column 70 by specifying

/WIDTH:70

/SUPPRESS Switch

When Batch reads your cards, it normally copies everything on the card
up to column 80 or up to any column you may specify with the /WIDTH
switch. However, if you do not want trailing spaces copied (to save
space on the disk, for example), you can tell Batch, by means of the
/SUPPRESS switch, not to copy any trailing spaces into the disk file.

Figure 3-1 illustrates a sample Batch input card deck wusing only
TOPS-10 commands.

ENTERING A BATCH JOB FROM CARDS

'/ $EQJ

.DIRECT

SYSTAT

.RESOURCES

.QUEUVE

ANITIA

.NODE

.DAYTIME

$TOPS10 |

$PASSWORD password

$JOB [proj,prog]

Figure 3-1 Batch Card Deck Using TOPS-10 Commands

3.2.10 Error Recovery - The $ERROR and $NOERROR Cards

You can use the S$ERROR card and the S$NOERROR card to recover from
errors that may occur while your Batch job is running. If an error
occurs during your job (for example, a program fails to compile),
Batch will normally terminate your job. However, if a S$ERROR or
SNOERROR card is included in your card deck immediately after the
point at which the error occurs, Batch will proceed as indicated on
the $ERROR or S$SNOERROR card and will not terminate the job.

3-18

ENTERING A BATCH JOB FROM CARDS

The S$ERROR card has the form:

$ERROR statement

The SNOERROR card has the form:

$NOERROR statement

statement is a system command or a special Batch command
(for example, .GOTO or .BACKTO) such as you would
include following a $TOPS10 card. The Batch
commands are described in Section 2.3. The
statement may also be a comment (begun with the
exclamation point(!)) if you wish Batch to simply
ignore the error.

If an error occurs in your Batch job and the S$ERROR card is then
encountered, the statement on the $ERROR card is executed and the job
continues. If the SERROR card is encountered when an error has not
occurred, the card is ignored.

If an error occurs in your Batch job and the $NOERROR card is
encountered, no action will be taken, with the exception that Batch
will not terminate your job as it would have if the card had not been
found. If the SNOERROR card is encountered when no error has
occurred, the statement on the SNOERROR card is executed.

The SERROR card is equivalent to the Batch command .IF(ERROR). The
SNOERROR card 1is equivalent to the Batch command .IF (NOERRQR). See
Section 3.5 for examples of Batch jobs using the $ERROR and $NOERROR
cards.

3-19

ENTERING A BATCH JOB FROM CARDS

3.3 SETTING UP YOUR CARD DECK

Batch enters commands into the control file when you use certain
control cards. Where you put these control cards in your card deck
determines their position in the control file. Batch reads your card
deck in sequential order, copying commands into the control file as
they or the special control cards are read. However, when Batch reads
a control card that tells it to copy a program or data into a disk
file, the disk file is created immediately, before the remainder of
the job is processed. Every succeeding card is copied until another

control card is read.

A Batch job can do almost anything a timesharing job can do. If you
wish to perform complicated tasks, you may include system commands in
your deck to direct Batch to execute these tasks. Section 3.4
describes the way to include system commands for the desired control.

The $JOB card, the S$PASSWORD card, and the $EOJ card are required for
all jobs. The $JOB card must be the first card in the deck and must
be immediately followed by the SPASSWORD card. The $EOJ card must be
the last card in the deck.

The control cards used to compile and execute programs written in
ALGOL, COBOL, FORTRAN, and MACRQO are shown in Figure 3-2. The
following card deck does not apply to control card decks for BASIC.
Refer to Section 3.4.1 for information regarding BASIC.

$EOJ

$SEOD

data for program

$SDATA

ALGOL source program

SALGOL

SPASSWORD password

$JOB [proj,prog]

NOTE:

p— For other languages use
$COBOL,
$FORTRAN,
$MACRO, etc.

Figure 3-2 Typical Program Card Deck

3-20

ENTERING A BATCH JOB FROM CARDS

The typical card deck shown in Figure 3-2 includes a language card
(SALGOL, S$COBOL, etc.) immediately prior to the source program. This
language card informs Batch of the system program to be employed for
processing (compiling) the succeeding cards. The $DATA card likewise
immediately precedes the data cards to inform Batch that the
succeeding cards contain data for the program. The program is stored
on disk as a disk file. The input data is stored on a spooled
card-reader file. The S$DATA card causes Batch to execute the program,
using the data cards as input. The $EOJ card informs Batch that all
cards pertaining to the job have been entered. At this time Batch has
access to the program to be compiled and the data to be wused by the
program; it knows what compiler or assembler is to be used, and has
built a control file containing the EXECUTE command so- that the
program will be run.

3.4 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch enters commands into the control file when you wuse certain
control cards such as SEXECUTE and $DATA. However, only a small
number of operations, such as compilation and execution of programs,
can be put into the control file using control cards. To perform
operations in your control file other than compilation or execution,
you must include commands 1in your card deck for Batch to copy into
your control file. If you want to include Batch commands or system
commands in your card deck, you must insert a $TOPS10 card immediately
before these commands in your deck. The $TOPS10 card directs Batch to
copy all succeeding commands into the control file until the next
control card is encountered. The commands will later be executed by
Batch in the same order that they appear in your card deck.

For example, in order to compare two card decks and produce a list of
the differences, you could include the cards shown in Figure 3-3 in
your deck.

ENTERING A BATCH JOB FROM CARDS

$EOJ

*LPT:=FILE.ONE,FILE.TWO

.R FILCOM

$TOPS10/switches

second card deck

$CREATE FILE.TWO

first card deck

SCREATE FILE.ONE

$PASSWORD password

$JOB [proj,prog]

Figure 3-3 Use of Control Cards to Compare Two Card Decks

The only system commands that you cannot use in a Batch job are ATTACH
and SET TIME. Batch will send these commands to the monitor, the
monitor will give an error, and Batch will detect the error and
terminate your job. Also, you should not use the LOGIN command in
your Batch job because you will get an error. Batch logs in your job
in accordance with your $JOB and $PASSWORD cards.

ENTERING A BATCH JOB FROM CARDS

3.4.1 Card Decks for Programs that Do Not Have Special Control Cards

By using system commands and the $CREATE control card, you can process
any program that does not have special control cards. You put a
SCREATE card in front of a program, data, or any other group of cards
to make Batch copy the cards into a disk file and, if you request, to
print the file on the line printer. The S$CREATE card is described in
detail in Section 3.2.4. You put the $TOPS10 card in front of monitor
and Batch commands to cause Batch to copy these commands into the
control file. The $TOPS10 card 1is described in detail in Section
3.2.9.

For example, a BASIC program does not have a specific control card.
To run a BASIC program under Batch from cards, you can_combine the
$CREATE card and the $TOPS10 card with system commands. You can also
use a SCREATE card to copy the data which a BASIC program will use.
The $DATA card cannot be used, because the $DATA card puts an EXECUTE
command into the control file, and BASIC does not use the EXECUTE
command to run. The $TOPS10 card causes Batch to copy the monitor
commands into the control file.

Figure 3-4 shows a card deck that enters a BASIC program for running
under Batch.

ENTERING A BATCH JOB FROM CARDS

SEQJ
*MONITOR

"DSK MYPROG.BAS

‘OoLD

r/(hsA&c

STORS10/switches

O\

$EQD

data for program

SCREATE FILE.ONE L

BASIC source program

SCREATE MYPROG.BAS

SPASSWORD password

SJOB [proj.prog] F

Figure 3-4 BASIC Program Card Deck with Integral Data
This BASIC program contains statements that read data from disk file
FILE.ONE. You answer OLD to the BASIC guestion
NEW OR OLD-
because the program file is on disk and can be retrieved by BASIC.
If your BASIC program reads data that is to be input from a terminal
during the running of the program, enter the data in the control file

so that it will be passed to your program by Batch. This is shown in
Figure 3-5.

ENTERING A BATCH

JOB FROM CARDS

"MONITOR

*3,5,-9,1,8

*5,1,3,2,-7

"1,2,3,2,-.7

*RUN

*DSK:MYPROG.BAS

*OoLD

.R BASIC

$TOPS10/switches

$EOD

BASIC source program

$CREATE MYPROG.BAS

$PASSWORD password

$JOB [proj,prog]

Figure 3-5

BASIC Program Card Deck with Provisions

for Terminal Data Input

You can use the same technique to

enter

programs written in any

language that does not have a specific control card provided that your

installation supports the language.
under Batch using the same technique.

Also,

YyOou can run system programs

ENTERING A BATCH JOB FROM CARDS

3.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in your job, Batch terminates the job.
However, vyou can specify recovery from errors in the control file by
means of the SERROR and S$NOERROR cards, described in Section 3.2.10.
You must include one of these cards at the point in the control file
where an error may occur. When an error occurs, Batch examines the
next system command level line (skipping over lines that contain data
or command strings of a system program) to find an .IF (ERROR)
statement or .IF(NOERROR) statement to tell it what to do about the
error. If an error does not occur and an .IF (ERROR) statement 1is
present, the .IF (ERROR) statement is ignored. If an error occurs and
an .IF (NOERROR) statement is present, the statement 1s ignored with
the exception that Batch does not terminate the job.

Thus, if you have a program that you are not sure is error free, you
can include a SERROR or SNOERROR card to tell Batch what to do if an
error occurs, as shown in Figure 3-6.

$EOQJ

REMAINDER OF JOB

$ERROR statement

FORTRAN source program

$FORTRAN

$PASSWORD password

$JOB [proj,prog]

Figure 3-6 Card Deck with Error Statement

ENTERING A BATCH JOB FROM CARDS

The above cards would cause Batch to make the following entries in the
control file.

.COMPIL . . .
.IF (ERROR) statement

On either the $ERROR or $NOERROR card, you must include a statement
that tells Batch what to do. You can use any system command, a
command to a program, or one of the special Batch commands. The .GOTO
and .BACKTO Batch commands are commonly used for this purpose. Refer
to Sections 2.3.4 and 2.3.5 for descriptions of these commands. If
you use .GOTO or .BACKTO on your $ERROR or $NOERROR card, be sure that
you supply a line for the control file that has the label you
specified in the .GOTO or .BACKTO command.

Two sample jobs are shown on the following pages. The first shows the
use of the S$ERROR card and the .GOTO command to specify error
recovery. The second example shows the use of the $NOERROR card and
the .GOTO command.

If you have a program that may compile with errors, you can include
another version of the same program in your job (that hopefully will
compile) and tell Batch to compile the second program if the first has
an error. The cards to enter this job are shown in Figure 3-7.

ENTERING A BATCH JOB FROM CARDS

$EQJ

B::!CONTINUE

$TOPS10

$EXECUTE

FORTRAN source program

SFORTRAN

A :!CONTINUE

.GOTO B

$TOPS10

data for program —

SDATA FORO.1.DAT/MAP

$ERROR .GOTO A

FORTRAN source program

SFORTRAN

$PASSWORD password ——J

$JOB [proj.prog] L

Figure 3-7 Card Deck with Error Recovery Program

ENTERING A BATCH JOB FROM CARDS

These cards set up the following control file for you.

.COMPIL /COMP/F10 DSK:LNxxxx.FOR/LIST

.IF (ERROR) .GOTO A

.EXECUT /REL/MAP:LPT:MAP DSK:LNxxxx.REL

.GOTO B

A::

ICONTINUE

.COMPIL /COMP/F10 DSK:LNxxxx.FOR/LIST

.EXECUT DSK:LNxxxx.REL

ICONTINUE

.DELETE DSK:LNxxxx.FOR,DSK:LNxxxx.REL,DSK:LNxxxx.FOR,DSK:LNxxxx.REL

The SFORTRAN card told Batch to copy the program into a disk file, to
create a unique filename for the program in the form LNxxxx.FOR, and
to insert a COMPILE command into the control file. The SERROR card
told Batch to insert .IF (ERROR) .GOTO A into the control file. The
data was copied into a disk file and an EXECUTE command was put into
the control file because of the $DATA card. The $TOPS10 card told
Batch to start copying cards into the control file, so Batch put the
next two lines into the control file. The second $FORTRAN card told
Batch to copy the program into a disk file, create another unique
filename for the program in the form LNxxxx.FOR, and put a COMPILE
command into the control file. A S$EXECUTE card was used instead of a
SDATA card because the data for the second program was already in a
file on disk. The S$TOPS10 card caused the next line to be put into
the control file.

When the job is started, Batch reads the control file and passes
commands to the system. If an error occurs in the compilation of the
first program, Batch executes the .GOTO command within the .IF
statement. The command tells Batch to skip to the line labeled A,
which contains a comment. Batch then proceeds to the next line. The
second program is compiled and executed with the data. The next line
is a comment, so Batch continues to the end of the control file. If
an error does not occur in the first program, Batch skips the .IF
statement, executes the program with the data, avoids the second
program by skipping to label B, and continues to the end of the
control file.

A variation of the above procedure, using the $NOERROR card and .GOTO
command is shown in Figure 3-8. The difference is that Batch skips
the .IF statement if an error occurs and performs it if an error does
not occur.

ENTERING A BATCH JOB FROM CARDS

‘/ $EOJ

B::1CONTINUE

.EXECUTE

A::!ICONTINUE

.GOTO B

.EXECUTE

$TOPS10/switches

data for program

$CREATE FORO.1.DAT

FORTRAN source program —

$FORTRAN

$NOERROR .GOTO A

FORTRAN source program

$FORTRAN

$PASSWORD password

$JOB [proj,prog]

Figure 3-8 Card Deck Using GOTO Statement

ENTERING A BATCH JOB FROM CARDS

Batch reads the cards and puts the following commands into the control
file.

.COMPIL /COMP/F10 DSK:LNxxxx.FOR/LIST
. IF (NOERROR) .GOTO A

.COMPIL /COMP/F10 DSK:LNxxxx.FOR/LIST
.EXECUT DSK:LNxxxx.REL

.GOTO B

Az

1CONTINUE

.EXECUT DSK:LNxxxx.REL

B::

ICONTINUE

.DELETE DSK:LNxxxx.FOR,DSK:LNxxxx.REL,DSK:LNxxxx.EOR,DSK:LNxxxx.REL

The S$SFORTRAN card tells Batch to copy the FORTRAN program into a file,
to create a unique filename of the form LNxxxx.FOR, and to insert a
COMPILE command into the control file. The $NOERROR card tells Batch
to insert an .IF command into the control file.

The second $FORTRAN card tells Batch to copy the second program into a
disk file, to create a unique filename of the form LNxxxx.FOR, and to
insert another COMPILE command into the control file. Instead of a
$DATA card, a S$CREATE card is used to tell Batch to copy the data into
a disk file named FORO1l.DAT. The $DATA card is not used here because
it would have the names of both programs in its list for the EXECUTE
command generation, which would cause an error when the 3job is run.
To tell Batch to start copying cards into the control file, the
$TOPS10 card comes next. Thus, Batch copies the next five cards into
the control file.

When the job is run, Batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the .IF
command is read and the .GOTO command is executed. Batch skips to the
line 1labeled A, which is a comment, and continues reading the control
file. The program LNxxxx.FOR is executed with the data, and the end
of the job is reached. If an error occurs while compiling the first
program, Batch skips the .IF statement and continues reading the
control file. The second program is compiled and then executed with
the data. Batch is then told to go to the line labeled B, which is a
comment 1line. The end of the 3job follows. The TOPS-10 .EXECUTE
command was used in this job rather than the SEXECUTE card. The
SEXECUTE card would have caused the names of both programs to be
included in the .EXECUTE command which would have resulted in an error
when the job was run.

The examples shown above illustrate only two ways that you can specify
error recovery in the control file. You can use the .BACKTO command
or any system command that you choose to help you recover from errors
in your job.

However, you do not have to attempt to recover from errors while your
job is running. You can correct your errors according to the error
messages in the log file when your job is returned to you, and then
run your job again.

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch jobs:
1. Output that you request, i.e., the results of your job.
2. Output from Batch commands, i.e., the log file.

3. Output that is the result of actions by your job, Batch, the

system, or system programs. Examples of this output are
compilation listings, <cross-reference 1listings, and error
messages.

4.1 OUTPUT FROM YOUR JOB

If your job uses the PRINT command to print files on the line printer,
the files will be printed in listings separate from the log file. The
printed output from each program will be preceded by two banner pages
containing your user name and other pertinent information. Following
these pages are two header pages that contain the name of your output
file in block 1letters; the output follows these header pages. Two
trailer pages follow your output; they contain the same information
that is on the first two pages. The header and trailer pages also
include three rows of numbers (read vertically from 001 to 132) that
represent the character print positions on the line printer.

If your output is usually directed to the terminal, it will be printed
in the log file, not as a separate file. 1In the sample output shown
in Section 4.4, the output from the program is included in the log
file because it was directed to the terminal rather than the line
printer.

Although this chapter deals mainly with printed output, you can have
output to any device that the installation supports, as long as the
installation allows you to use these devices.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the
statements in the control file, commands sent to the system from Batch
for you, and the replies to the commands from the system and from
system programs like the compilers. Any error message sent from the
system or system program or from Batch itself is also written in the
log file.

INTERPRETING YOUR PRINTED OUTPUT

When your Batch card job is printed on the line printer, it will have
a unique filename of JBxxxx and a file type of .LOG. This file is
deleted automatically after it has printed.

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of action by your job
includes compiler listings, cross-reference listings, and loader maps
for programs that were successfully loaded.

The compiler and cross-reference listings are those listings generated
by the compiler if you request them. When you enter your job from
cards, Batch requests compilation listing for you unless you specify
otherwise. Cross-reference listings are generated for you only if you
specifically ask Batch for them. When you enter your job from a
terminal, you must request the listings in the COMPILE command. Refer
to the DECsystem-10 (TOPS-10) Batch Reference Manual for the switches
(/CREF, /MAP) that are available to generate additional listings for
your Batch job.

If a fatal error occurs in a program in your job and you have not
included an error recovery command to Batch, Batch will not try to
recover from the error for you. 1Instead, it will write the error
message in the log file and terminate your job.

4.4 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections.
The first shows a job entered from a terminal, the second shows a job
entered from cards. The log file is somewhat different for the two
types of jobs.

4.4.1 Sample Output of a Job from a Terminal

The following example illustrates a job as it would be entered from a
terminal. You would first create the program as a file on disk.

« 505" COBOL1.CHLGED)

Inputt COROL1.CEL

00100 IDENTIFICATION DIVISION.e)

00200 FROGRAM~IL, COROLI (G

00300 ENVIRONMENT DIVISION. D)

00400 DATA DIVISION.Cre)

00500 FROCEDURE DIVISION.GeD)

00600 START J(CreD)

00700 DISPFLAY "THIS IS TO SHOW SAMFLE OUTFUT FROM BATCH, " (D)
00800 DISFLAY *THESE TWO LINES ARE QUTFUT FROM THE FROGRAM.® (&)
00900 STOF RUN.Cr)

01000 ?

xE D)

COSKC:COROLL.CELD

*

INTERPRETING YOUR PRINTED OUTPUT

Then you would make up a control file to compile and execute the COBOL
program.

Cse

.SOSlﬁYJGB.CTLC::)

Ineutd MYJOR.CTL

00100 JCOMPILE COROLLCERL/ZLIST D)
00200 JEXECUTE COROL 1., CELGED)
00300 ?

(Esc)
XE (re1

CRNGRKCIMYJOR.CTL.Z

*
You would then submit the job to Batch using the SUBMIT command.
(SI’)

|
¢ SUBMIT MYJOR.CTLCRD)
CINFR6IMYJOR=/8eqt4?b1/Timet03051001]

*

When the job is run, the program is compiled and a 1listing is
produced. The following 1listing is placed 1in the queue of the
line-printer spooler:

PRUGRAM COBOLI COBOLe6Y 12(526) BIS SeAPRe78 14142
COBOL1,CRL 0%5APRe78 14452

0001 00100 IDENTIFICATION DIVISION,

0002 00200 PRUGRAMeID, MYPROG,

0003 00300 ENVIRONMENT DIVISION,

0004 00400 DATA pIVESION,

0005 00500 PROCEDURE DIVISION,

0006 00600 STAPT,

0007 00700 DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM BATCH,",
00d8 00800 DISPLAY "THESE Tw0 LINES ARE OUTPUT FROM THE PROGRAM,",
0009 00900 STUP RUN,

NO ERRORS DETECTFD

The log file below is printed as your job's output. The output from
the program 1is written in the log file because it is output to the
terminal and the log file simulates the terminal dialogue. The 1log
file also contains some commands that Batch sent to the system for you
and some additional system information. An annotated log file 1is
shown on the following page. Note that each line in the log file is
preceded by the time of day when the line was written. Following the
time 1is a word that describes what kind of information is on each
line. Much of the information is system information and is described
in detail in the DECsystem-10 (TOPS-10) Batch Reference Manual.

189142329
15342129
15142129
15142329

153142129
19142129
15842130
15814213%
15142138
1$142136
15342136
15142138
15142150
1%5:42150
1%842150
15142150
151421%0
15142151
19842351
15142151
19142151
158421%1
15342151
15842151
15142152
19142152
1%142154
15142154
15142154
1531421%4

4.4.2

BAJOB
BAFIU
BAFIL
BASUM

MONTR
MONTR
USER
JSER
USER
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
USEFR
USER
MAONTR
MONTR
MONTR
MONTR

INTERPRETING YOUR PRINTED OUTPUT

BATCON version 103(2207) running MyJOB sequence 49%1 in gtream |
Inpuye ¢rom DSKCiMYJOB,CTL(27,%107)

OQutput to DSKCImMYJOB,LDG([27,5107)

Job parameters

Time 0043053100 uniquesYEs Restart §NO OutputsLDG

«LOGIN 27/5107 /DEFER/SPOOLYALL/TIME;300/LUCATE126/NAMEg*BROWN,E"
Jog 23 RK3IATA KL10 SYS#1026 TTYS10

[LGNJBP Other Jobs same PPN146)

1542 0laAugeT8 Tue

2 «COMPILE COBOL1{,CBL/LIST
cosope COBOLY [COBOL3,CBL]

EXIT

+ 1EXECUTE COBOLg ,CBL

LINKg Loading

[LNKXCT CORNL1 Execution)

THIS I8 TO SHOW SAMPLE QUTPUT FROM BATCH,
THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT
KJOB/BATCH

(LGTAJL Another job 1s still lodgedein under [27,%107))
Job 23 User BROWN,Z (27,%5107]

Loggedeoff TTYS10 at 15142154 on i=Auge78

Runtimep 0100101, KCSt22, Connect timet 0100324

Disk Reads:954, writes;93

Sample Output of a Job on Cards

This example shows a job in which a small COBOL program 1is compiled

and executed.

The card deck is shown in Figure 4-1.

$EOJ

$EXECUTE

COBOL source program

$COBOL

$PASSWORD password

$JOB [27,56107]

Figure 4-1 COBOL Print Program Card Deck

4-4

INTERPRETING YOUR PRINTED OUTPUT

The COBOL program is as follows.

IDENTIFICATION DIVISION,

PROGRAM-ID. COBOL1l.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

START.

DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM BATCH.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.

When the job is run, the program is compiled and a compilation listing
is produced. The listing is shown below. Note that the compiler puts
sequence numbers on the program even though they were not in the
original program.

PROGRAM COBOL COBOL»68 12(536) RIS TeAPR=78 0710}
LNON3J,CBL 07«APRe78 07304 .

0001 IDENTIFICATION DIVISION,

0002 PROGRAMeID, COBOLI,

0003 ENVIRONMENT DIVISION,

0004 DATA DIVISION,

0008 PROCEDURE DIVISION,

0006 START,

0007 DISPLAY #THIS IS TO SHOW SAMPLE OUTPUT FROM BATCH,",
0008 DISPLAY ®THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,,
0009 STOP RUN,

NO ERRORS DETECTED

After the program is compiled, it is loaded and executed. The program
in this example does not have output to the line printer. 1Instead its
output is written to a terminal. Because this is a Batch job, the
terminal output 1is written in the log file. The log file is printed
because the end of the job is reached. The log file contains all the
dialogue between your job and the system and system programs, and some
commands that Batch sent to the system for you. An annotated log file
is shown on the following pages. Note that each line in the log file
is preceded by the time of day when the line was written. Following
the time is a word that describes what kind of information is on each
line. Refer to the DECsystem-10 (TOPS-10) Batch Reference Manual for
a description and definition of these words.

13339112 STDAT 2+=AUGe=T8 RK3IATA KL10 sYE#1026 SPRINT Version 102(3024)
13839112 STCRD #JOB [27,8107)
13139112 STCRD $COBOL

13139114 STMSG Flle DSKILNON3IJ CBL Created = 9 Cards Read = 2 Blocks Written
13339114 STCRD SEXECUTE

13139114 STCRD SEQJ

13139114 STSUM End gt Job Encountered

13139114 ST8UM 14 Cards Read

13139114 STSUM Baten Input Request Created

13142144
13042144
13142144
13342044

13342144
138142144
13142149
13142146
13142146
131420147
13142147
13142149
13143100
13343100
13143100
13343300
13143101
13343103
13843103
13843103
13143103
13143103
13143303
13143103

13143103
138431023
1314310
13143104
133434104
13143304
13143104
13143404
13143104
13143404
13143104
13143109
131434098
13143208
13143108

BAJOB
BATFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR

BLABL
MONTR
USER
USER
USER
USER
USER
MONTR
MDNTR
USER
USER
MONTR
MONTR
MONTR
MONTR

INTERPRETING YOUR PRINTED OUTPUT

BATCoN version 102(2067) running JBONII sequence 1259 {n streanm !
Inpug from DSKCgJBON3I,CTLL(27,5107)

Output to DSKC3JRONII , LOGL27,51071

Job parameters

Timey0030%300 uniqueryr$ RestartiYLS DutputLOG

,LOGIN 27/85107 JDEFER/SPOOLIALL/TIME1300/LOCATES26/NAMES "BROWN,E"

JUB 49 RK3IATA KL1O SY8#1026 TTYSit
{LGNJSP Other Jobs same pPN121
1342 02eAuge?t wed

. «COMPIL /CUMP/COB DSK3jLNON3J,CBL/LIST
CUBOL1 COBOL1 [LNON3IJ,CBL)

EXIT

+ +EXECUT /REL DSKILNON3J,REL

LINK, Loading

(LNKXCT COBOL1 Execution)

THIS IS TO SHOW DUTPUT FROM BATCH,

THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT

[]

SERPy g

sFINgt

+VELETE DSKILNONJJ.CBLoDsKlLNDNBJ.REL
Fileg deleted)

LNON3J ,CBL

02 Blocks freed

LNON3J REL

72 Blocks freed

+KJOB/BATCH

(LGTAJL Another job i{S still 10gged=in Under (27,8107}]
Job 49 User BROWN,E (27,5107}

Loggedmott TTYS11 at 13143105 on 2=AuQg=78

Ryntimes 0t0010y, KCS126, Connect ¢imet 0100120

Digk Readsy976, wWritesi9g

CHAPTER 5

EXAMPLES OF COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and
from cards. Section 5.1 illustrates entering jobs from a terminal.
Section 5.2 shows entering jobs from cards. The examples are the same
in both cases, the difference is in the way that they are entered.

5.1 USING THE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the
terminal. Since the job is being entered through Batch, the output is
written in the log file instead of on an actual terminal.

|
508 MYFROG.ALG(rD)
INFUT! MYPROG.ALG
00100 BEGINCx)

00200 REAL X3 INTEGER IsCer)
00300 X$=135Ca)
00400 FOR It= 1 UNTIL 1000 DO X = X+I 3Cer)
00500 FRINT (X)3GaD)
00600 END G
00700 ?
Ces)
*E (e
CDSKC IMYFROG . ALGI

*

The control file for the program is created as follows.

«D

[}
+ 508 MYFILE.CTLCxD)
INFUT?! MYFILE.CTL
00100 +COMFILE MYFROG.ALG/LIST rer)
00200 +EXECUTE MYFROG.ALG(RT)

00300 ?
ESC

L AQED)

LDSKCSMYFILE.CTL]

*

EXAMPLES OF COMMON TASKS WITH BATCH

To execute this ALGOL program using the Batch control file, issue the
SUBMIT command.

.SUBMIT‘MYFILE
CINFR6IMYFILE=/SEQ!4805/TIMEIQ:105:001

When Batch starts the job, the statements in the control file call the
ALGOL compiler to compile the program. The TOPS-10 monitor then calls
the loader to load the program for execution. A listing of the
program will be printed with the log file shown on the following page.

DECSYSTEM 10 ALGOLe60, VERSION 6A(634) 01eAUGe78 12136303
COMMAND STRINGS MYPROG,LPT$MYPROGEMYPROG,ALG

000004 By 00100 BEGIN

START OF BLOCK 1

000008 00200 REAL Xy)INTEGER I}

000008 00300 Xtwiy

000015 00400 FOR Its { UNTIL 1000 DO X &% X+i
000021 00800 PRINT (X))

000024 Ej 00600 END

END BLOCK g, CONT 0

NO ERRORS

12339455
12135198
1213519%%
12835188

12835153
1213%15%
123358156
12136100
12136100
121361401
12136301
12136101
12136104
12136104
121361304
12136304
12136305
12836106
12136106
12136106
12136106
12136106
12136106
12136107
12136107
12136108
12136108
12136108
12136108

12136109
12136309
120361313
12836117

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USFER
USER
USER
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER
MONTR
MONTR
MONTR
MONTR

LPDAT
LPDAT
LpMsG
LPMSG

EXAMPLES OF COMMON TASKS WITH BATCH

BATCON VERSION 103(2207) RUNNING MYFILE SEQUENCE 4805 IN STREAM S
INPYDY FROM DSKCtMYFILE , CTL(27,5107)

QUTPUT TO DSKCIMYFILE,L0G(27,5107)

JOB pARAMETERS

TIME}300105300 UNIQUESYES RESTART$NO QUTPUTILOG

+LOGIN 27/5107 /DEFER/SPOOLIALL/TIME1300/LOCATE126/NAMEI*BROWN,E"
JOB 26 RK3ATA KL10 SYS#1026 TTYS13

(LGNy8P OTHER JORS SAME PPN146)

1236 01=AUGe78 TUE

2o COMPILE MYPROG,ALG/LIST
ALGOL1 MYPROG

EXIT

. «EXECUTE MYPROG,ALG

LINK; LOADING

[LNKXCT MYPROG EXECUTION)
1,0010000& 3

END OF EXECUTTON,
+KJOB/BATCH

{LGTAJL ANOTHER JOB 18 STILL LOGGEDwIN UNDER [27,8107)]
JOB 26 USER BROWN,E [27,5107)

LOGGED=OFF TTYS{3 AT 12136107 ON 1eAUGeTS

RUNTIMEY 0800101, KCSt12, CONNECT TIME; 0100111

DISK READS1646, WRITES124

LPTSPL VERSION 103(24131) RK3A7A KL10 SY8#31026
JOB MYFTLE SEQUENCE #4808 ON LPT261 AT $eAUGe78 12136109
[LPTSTF STARTING FILE DSKC1QPOS26 ,LPT(3,13)])

(LPTFPF FINISHED PRINTING FILE DSKC3QPOS826,LPT(3,3])

EXAMPLES OF COMMON TASKS WITH BATCH
BASIC Example

The second example is a BASIC program submitted to Batch. You can
make up the program file using BASIC and save it on disk. Then make
up a control file that simulates the dialogue with the BASIC system.
The program is shown below.

JR BASIC(GD)

READY
NEWCe)
NEW FROGRAM NAME--MYEAS.RASCkn)

REALY
00100 INFUT ()

00200 IF DI = 2 THEN 1100

00300 FRINT *X VALUE"y *"SINE"y "RESOLUTION"(mD)
00400 FOR X=0 TO 3 STEF D(x1)

00500 IF SIN(X)<=M THEN 800w

00600 LET XO0=XCr)

00700 LET M=SIN(X)(i)

00800 NEXT X))

00900 FRINT XOsMsD(Rr)

01000 GO TO 100(w)

01100 END(G

SAVE (ReD)

READY
MONITOR Ce)

*

The program requests data from the your terminal when it 1is running.
You include the data in the control file. For this program, the final
data item must be 2 to <conclude the program. The control file
follows.

+ 805 BASIC.CTLCRD

Imrut: BASIC.CTL

00100 F O RASIC G

00200 ¥OLD DSKIMYERAS.RAS(RD)
00300 ¥RUNCReD)

00400 ¥ 1GeD)

00500 ¥, 01Cke)

00600 ¥, 001CreD)

00700 %2 G

00800 ¥MONITOR CreD)

00900 ?
Crsc)
XE (rex

CEASIC.CTL.11]

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed as part of the control

file 1listing.

follows.

The command to submit the job to Batch is executed as

|

LSUBMIT BASIC.CTLCrT)
CINP26IRASIC=/8eat4823/Timei 0105001

*

121483140
12148140
12148140
12148140

12148140
12148140
12148141
12148343
1214814
12148144
12148144
12148344
12148145
1214814%
12148148
121483 4%
1214814%
12148145
1214814%
1214814%
1214814%
121481489
1214814%
12148148
12148445
121481458
12148145
12148145
1214844%
12148145
12148149
12148148
1214814%
123481346
12148346
12148146
12148146
12148146
121498146
12148146
12148146
12148146
121481146
12148846
12148147
12148347
12148147
12148347

12148149
12149149

BaJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USEP
USER
USER
USER
USER
USER
USER
USEPR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER
MONTR
MONTR
MONTR
MONTR

LPDAT
LPDAT

BATCON VERSION 103(2207) RUNNING BASIC SEQUENCE 4823 IN STREAM |
INPUT FROM DSKCtBASIC,CTL[27,5107)

OUTPUT TO DSKCIBASIC,LOG[27,5107])

JOB PARAMETERS

TIME 00305100 UNIQUEIYES RESTARTINO DUTPUT4LOG

oLOGIN 27/5107 /DEFER/SPOOLIALL/TIME300/LOCATES26/NAME) "BROWN,E"

Jo8 30 RKIATA KL10 8YS#1026 TTYS04
(LGNJSP OTHER JOBS SAME PPN146)

1248 0D1wAUGe?8 TUE

¢+sR BASIC

READY, FOR HELP TYPE HELP,
oLp
OLD FILE NAMEe#DSKIMYBAS ,BAS

READY

RUN

MYRAgS 12148 0lwAUGe78

X VALUE SINE RESOLUT]ION
1,6 0,999574 0,1
7,01

X VALUE SINE RESOLUTION
1,57 1, 0,01
7,001

X VALUE SINE RESOQLUT]ION
1,571 1 0,001
2

TIME; 0,26 SECS,

READY
MONITOR

+KJOB/BATCH

[(LGTAJL ANOTHER JNB 18 STILL LUGGEDwIN UNDER (27,%307])
JOB 30 USER BROWN,E (27,8107)

LOGGED«OFF TTYS04 AT 12148147 UN {aAUGeTH

RUNTIME) 0100800, KC819, CONNECT TIMEI 0100106

DISK READS194, WRITFESt6

LPTBPL VERSION 103(2421) RK3IATA KL1O SYys#i026
JUR RASIC SEQUENCE #4823 ON LPT261 AT |wAUGe78 12748149

EXAMPLES OF COMMON TASKS WITH BATCH
FORTRAN Example

The third example is a FORTRAN program that prints output on the 1line
printer. You want to tell Batch in the control file to delete your
relocatable binary file if an error occurs when your program 1is
executed. If an error does not occur, you want Batch to save your
relocatable binary file as it normally would. The program 1is shown
below.

|
508 MYPROG.FORCxD
Inrut! MYFROG.FOR
c

00100 THIS FROGRAM CALCULATES FRIME NUMEERS .G
00200 00 10 I =11+50,2Ce)
00300 J=1CGeD)
00400 4 J=J+2Ce)
00500 A= (R
004600 A=1/ACreT)
00700 L=I/JCD)
00800 E=A-LCrer)
00900 IF (R) Sy10y5CkeD)
01000 5 IF (J.LT.SQRT(FLOAT(I))) GO 710 4Car)
01100 FRINT 105y ICe)
01200 10 CONTINUECr)
01300 105 FORMAT (I4y ‘IS FRIME.) i)
01400 ENDCrir)
01500 8
(B0
KECRer)
COSKC $MYFROG.FOR]

*

You create the control file to compile and execute this progranm,
deleting the relocatable binary file if there is an execution error as
follows.

«D
|

+ 808 MYFOR.CTLCD

InFputt MYFOR.CTL

00100 +COMFILE MYFROG.FORGaiD)

00200 EXECUTE MYFROG.RELCw)

00300 +IF(ERROR) DELETE MYPROG.FORCwD)
00400 END::IEND OF JORCaD)

00500 %

t
*ECD)

CDSKCIMYFOR.CTL

You submit this job for execution as follows.

. SUBMIT‘ MYFOR . CTLCReD)
CINPR26:MYFOR=/5ec:4834/Timet0:053001

*

EXAMPLES OF COMMON TASKS WITH BATCH

The program output is as follows.

11 is PRIME.
13 IS PRIME,
17 15 PRIME,
19 18 PRIME,
23 IS PRIME,
29 I8 PRIME,
31 IS PRIME,
37 18 PRIME,
41 18 PRINE,
43 IS PRIME,
47 IS PRIME,

The log file produced by the job is as follows.

13101148 BAJOB BATCON VERSION 103(2207) RUNNING MYFOR SEQUENCE 4834 IN STREAM 1
13101148 BAFIL INPUT FROM DSKCIMYFOR,CTL(27,5107])
13101148 BAFIL OQUTPYT TO DSKCIMYFOR,LOG(27,%107)
13101148 BASUM JUB pARAMETERS
TIMENn03105200 UNIQUE YES RESTARTIND OUTPUTILOG

13101148 MONTR
131013148 MONTR ,LOGIN 27/%107 /DEFER/SPOOLIALL/TIMES300/LUCATE26/NAMES"BROWN,E"

13101148 USER JOB 30 RKIRTA KL1O 8YS#1026 TTYS04
13101151 USER (LGNJSP OTHER JOBS SAME PpPNi46]
13101151 USER 1301 01eAUGw=78 TUE

13101152 MONTR
13101152 MONTR ,,COMPILE MYPROG,FOR
13101453 USER FORTRANp MYPROG
13101155 USER MAIN,
1310145% MONTR
13101358 MONTR , ,EXECUTE MYPROG,REL
13101156 USER LINKy; LOADING
13301157 USER [LNKXCT MYPROG EXECUTION)
13101159 USER
13101159 USER END OF EXECUTION
13101159 USER CPU TIME1 0,04 ELAPSED TIME} 0,65
13101159 MONTR EXIT
13101159 MONTR
13101359 MONTR
13101159 FALSE ,IF (ERROR) ,DELETE MYPROG,FOR
13101359 BLABL ENDy,
lEND OF JOB
13101159 MONTR ,KJOB/BATCH
13101159 USER
13101159 USER [LGTAJL ANOTHER JOB 18 STILL LOGGEDwIN UNDER (27,8107)]
13502101 MONTR JOB 30 USER BROWN,E [27,5107]
13102101 MONTR LUGGEDeOFF TTYS04 AT 13102101 ON 1eAUGe78
13102101 MONTR RUNTIME; 0100100, KCS111, CONNECT TIMEf 0100112
13102101 MONTR DISK READS1302, WRITES119

13912133 LPDAT LPTS8pL VERSION 103(2421) RKIATA KL10 Sys#io02e
13012133 LPDAT JUB MYFOR SEQUENCE #4834 ON LPT26% AT 1»AUGe78 13312139
13112938 LPMSG [LPTSTF STARTING FILE DSKCI1QP1826,LPT{3,3))

13112144 LPMSG (LPTrPr FINISHED PRINTING FILE DSKCI1QP1826,LPT(3,3)]

COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tape
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The MOUNT command assigns the
drive to your Jjob and associates the logical name that you specify

5-7

EXAMPLES OF COMMON TASKS WITH BATCH

with the physical drive assigned. The MOUNT command also informs the
operator of the name or ID number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the «central site before you submit your job.) You create
the program as follows.

. sos‘ MYFPROG.CEBLCeD)

InFutt MYPROG.CEL

00100 IDENTIFICATION DIVISION.(Cr1)

00200 ENVIRONMENT DIVISION.Cki)

00300 INFUT-OUTFUT SECTION.CrkD)

00400 FILE-CONTROL ()

00500 SELECT QUTFIL. ASSIGN TFORIV.(CxeD
00600 DATA DIVISION.CRD)

00700 FILE SECTION.Ca)

00800 FI OUTFIL LAREL RECORDS ARE STANDARDCRED

00900 VALUE OF ILENTIFICATION IS *INFIL DAT*CeD)
01000 DIATA RECORDI IS OUTRECCxD)
01100 ELOCK CONTAINS 20 RECORDS.CD)

01200 01 OUTREC FIC X(¢80).(xD)

01300 WORKING—-STORAGE SECTION.
01400 77 A FIC 9999 USAGE IS COMP.(1D)
01500 FROCEDURE DIVISION.Cx)

01600 START .(CreD)

01700 OFEN OUTFUT OUTFIL.(GD)
01800 MOVE ZEROS TO OUTREC.Cxi)

01900 MOVE 1000 TO A.(m)

02000 LOOF « Cxir)

02100 WRITE OUTREC.Gi)

02200 SUETRACT 1 FROM A.Ge))

02300 IF A IS GREATER THAN ZERO GO TO LOOF.Cer)
02400 CLOSE OUTFIL.CaD)

02500 STOF RUN.(mr)

02600 %

*E Ce)

CDSKC ¢ MYFROG +.CEL]

*

You create the control file (COBJOB) wused to run the program
(PROG1.CBL) as follows.

. SOSl CORJOR.CTLCreD)

Inrut?! CORJOER.CTL

00100 +MOUNT MTAIMAGL/REELID!SCRTCH/WENARLECT)
00200 +COMPILE MYFPROG.CRL/LIST(r)

00300 +EXECUTE MYFROG.CELCu)

00400 +DISMOUNT MAGL Cre)

00500 $

o

*xE ()

COSKC:CORJOR.CTL]

*

EXAMPLES OF COMMON TASKS WITH BATCH

You submit the job for execution as follows.

*

The log

12134125
1233412%
1213412%
12134125

12134125
12334125
12134126
12134126
12134326
12134131
1213413
12134132
12134132
12134134
12134134
12136101
12136101
12136101
12136101
12136108
12136108
12136108
12136308
12136108
12136109
12136311
12136111
12136111
12136111
12136113
12136313
12136113
12336113
12137158
12137358
12137158
12137158
12137158
12137159
12337159
12137159
12137159

12137159
12837159

.SUBMIT‘ CORJOR.CTLCED
CINF26:CORJOR=/8eqt1072/Timet0$05:001

file

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER
USER
USER
USER
USER

LPDAT
LPDAT

produced by COBJOB is shown below.

BATCON version 103(2207) running COBJOB sequence 1072 in strean |
Inpue from DSKBCOBJIOB ,CTL(27,%031)

Outpyt to DSKBICOBJOB,LOG(27,%5031)

Job parameters

Time; 00305300 uniquelYES RestartiINg DutputiLoG

W+LOGIN 27/5031 /DEFER/SPOOL!ALL/TIM!I300/NAME|"LAMAR.B"
JOB 13 KI10 8YS 514C 6032 TTY103

[LGNJSP Other jebs same PPNii4]

{LGNRDU Recomputing disk usage)

{LGNQTA DSKB INg110000 OUTIS000 USEDIL1660)

1234 02«AugeTe wed

« o ¥OUNT MTAEMAGY /REELIDISCRTCH/WENABLE
Request queuved

wateing,,.2 *C’s to Exit

MAG1 mounted, MTAQ01 used

++COMPILE MYPROG,CBL/LIST
COBOLS MAIN [MYPROG,CBL)

EXIT

« s EXECUTE MYPROG,CBL
LINKy Loading
[LN%XCT MYPROG Execution)

EXIT
,sDISMOUNT MAGLY

[(MTAQ0} 1 8CRTCH WRITE(C/H/8) ® 75130/0/0]
Reguest QUOUQd

Wwaiting,,.2 *C’s to Exit

MTAO01 Dismounted

,KJOR/BATCH

[LGTAJL Anotherl job 18 still logged®in uUnderl (27,50311]1
Job 13 User LAMAR,B [27,5031]

Lovgedeoff TT-103 at 12137159 on 2eAuge=78

Runt{mes 0100.04, KCS176, Connect evimey 0103133

Disk Readsi282, Writessio8

LPTSPL yversion 103(2421) K110 SY5 %14C 603A
Job COBJOR sequence #1077 on LPTO00 at 2eAuge?s 12137159

EXAMPLES OF COMMON TASKS WITH BATCH

5.2 USING CARDS TO ENTER JOBS
ALGOL Example
The first job is a simple ALGOL program that writes its output into

the log file because it has statements that would cause it normally to
write to the terminal. The program is as follows.

BEGIN
REAL X; INTEGER I;
X :=1;
FOR I :=1 UNTIL 1000 DO X:=X+1;
PRINT (X);
END

The cards to enter this program are shown in Figure 5-1.

$EOQJ

SEXECUTE

ALGOL source program

SALGOL/NOLIST

$PASSWORD password

$JOB {27,5107]

Figure 5-1 ALGOL Job Entry Card Deck

EXAMPLES OF COMMON TASKS WITH BATCH

The output, including the log file, is shown below.

13139316 STDAT 2eAUGeT8 RKIATA KL10 SYS#1026 SPRINT Version 102(2034)
13139116 S8TCRD $JOB (27,5%107]

13139316 STCRD SALGOL/NOLIST

13139117 STMSG File DSKILNONIL,ALG Created « 6 Cards Read = | Blpeks wWritten
13139117 STCRD SEXECUTE

13139117 STCRD SEOJ

13139317 STSUM End of Job Encountered

133139117 STSUM 11 Cards Read

13139317 sTSUM Bateh Input Request Created

13143306 BAJOB BATCON version 102(2067) running JOBONIK sequence 1239 in stream 1
13143406 BAFIL Input from DSKCyJRONIK,CTL(27,5107))
133433406 BAFIL Output to DSKCIJBONIK,LOG(427,510M)
13143106 BASUM Job parameters

Time;0030%300 UniquesYES Restapt YES OutputyLOG

13143306 MONTR
1384342t MONTR ,LOGIN 27/%107 /DEFER/SPOOLIALL/TIME)300/LOCATES24/NAMES"BROWN E®

13143122 USER JoB 49 RK3ATA KLin 8SYS#1026 TTYSi
13143123 USER [LGNJSP Other Jobs same PPN321)
13143123 UBER 1343 02eAuge78 Wed

13143124 MONTR

13143124 MONTR ,,COMPIL /COMP/ALG DSK3LNON3IL,ALG
13143127 USER ALGOLt LNON3L

13143127 MONTR

13143127 MONTR EXIT

138143827 MONTR

13143127 MONTR ,,EXECUT /REL OSKILNONJL REL
13843128 USER LINK; Loading

13943331 USER {LNXXCT LNON3IL Execution)
13843132 USER 1,00100008 3

13143132 USER

13143832 USER End of eXecution,

13143332 MONTR
13143332 MONTR
SERR;

13143132 BLABL SFINgs

13143132 MONTR ,DELETE DSKILNON3L ,ALG,DSKILNONIL,REL

13143132 USER Fileg deleted:

13143133 USER LNON3L ,ALG

13943333 USER 0l Bjocks freed

13143333 USER LNON3L,REL

13143333 USER 01 Blocks freed

13143333 MONTR

13843133 MONTR ,KJOBR/BATCH

13143133 USER

13143133 USER {LGTAJL Another job is still loggedaein uUnder ([27,%107]}]
133143158 MONTR Job 49 User BROWN,E (27,5107)

1314315% MONTR Loggedeoff TTYS{} at 13343159 on 2«Auge7d

13143355 MONTR Runtimes 0800801, KCS231, Connect ¢imes 03100832
131431%% MONTR Disk Readsi164%, wWritesii9

BASIC Example

The next example shows how to enter a BASIC program. You must precede
the program commands with a $SCREATE card so that the program will be
copied into a file on disk. No $DATA card can be used because BASIC
does not wuse the EXECUTE command and because the data is entered by
means of the control file: the program requests data when it is
running; it finds the data in the control file. For this program the
final data item in the control file must be 2 so that the program can
be concluded. The program is shown on the following page.

EXAMPLES OF COMMON TASKS WITH BATCH

5 INPUT D

10 IF D=2 THEN 100

20 PRINT "X VALUE", "SINE", "RESOLUTION"
30 FOR X=0 TO 3 STEP D
40 IF SIN(X)=M THEN 80
50 LET X0=X

60 LET M=SIN (X)

70 NEXT X

80 PRINT XO0,M,D

90 GO TO 5

100 END

The cards to enter the program and run it are shown in Fiqure 5-2.

/ $EOJ

*MONITOR

*RUN

*DSK:MYBAS.BAS

*oLD

.R BASIC

$TOPS10

$EOD

L

BASIC source program

$CREATE MYBAS.BAS

$PASSWORD password I

$JOB [27,5107]

Figure 5-2 BASIC Job Entry and Run Card Deck

5-12

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed in the log file because it

would
below.

13139119
13139119
13139119
13139121
13139121
13139122
13139123
13139123
13139123
13139123

13143156
13143156
131431%6
133143156

13143156
131431%6
13143197
13144110
13144110
13144911
13144311
1314431
13144111
13044111
13144111
13844312
131441012
13144112
133144312
13144112
13144112
13144012
13144312
13144412
13144312
13844112
13144312
13144112
13144112
13144912
13144412
13144112
13144112
133144112
13144112
13144312
13144112
13144112
13144112
13144112
13144212
13144112

13144312
13144112
131441212
13144112
13144313
13144113
131441313

STDAT
STCRD
STCRD
STM3G
STCRD
STCRD
STCRD
STSUM
ST8UM
STSUM

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR

MONTR
USER

USER

MONTR
MONTR
MONTR
MONTR

normally be printed on the terminal. The log file is shown

Aa=AUGe78 RK3ATA KL10 8Y8#1026 SPRINT Verston 102(2024)
$JOB (27,%107)

$CREATE MYBAS,BAS

:éé;'nsleYaAs.aks Created o i1 Cards Read » 2 B)oCKSs Written
$TOPS10

sEQJ

End of Job Encountered

26 Cards Read

BAaten Input Request Created

BATCON version 102(2067) running JBON3IM sequence 1260 in stream |
Input -from DSKC3JBONIM,CTL(27,5107)

Qutput tOo DSKCIJBRONIM,LNGL27,8107)

JOob parameters

Timey0040%3100 Uniquesygs RestartiYES OutputsLOG

+LOGIN 27/5107 /pEFER/SPOOLSALL/TIMEI300/LOCATE126/NAMES"BROWN,E"

JOB 49 RK3ATA KLI1C SY8#1026 TTYS1)
[LGNJSP Other Jobs same pPN321)

1344 02«AugeT8 wed

«oR BASIC

READY, FOR HELP TYPE HELP,
*0LD
oLD pILE NAMEw»sDSK}MYBAS,BAS

READY

*RUN

MYBAS 13144 02«AyGe=78
74,1

X VALUE SINE RESOLUTION
] 0 041

T%,01

X VALUE SINE RESOLUTION
0 0 0,01
TH,001

X VALUE SINE RESOLUTION
0 0 0,004

742

TIMEy 0,09 SECS,

READY

#MONTITOR

]

SERR} 3

BTNECF End of the Contyol File whije searching for SFIN
«KJOB/BATCH

(LGTAJL Anothel job i8 still loggedein uUnder [27,5107})
Job 49 User BROWN,E (27,8107]

Loggedeaff TTYS1)| at 13144113 on 2eAuge=T8

Runt{mes 0100100, KCSI18, Connect tymet 0100416
Disk Reads188, wWpritesis

EXAMPLES OF COMMON TASKS WITH BATCH

FORTRAN Example

The third example shows a FORTRAN program that prints output on the
line printer. 1In the control file, you want to tell Batch to prevent
execution if the program compiles incorrectly.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
Do 10 1=11,50,2
J=1
4 J=J+2
A=J
A=I/A
L=1/J
B=A-L
IF (B) 5,10,5
5 IF (J.LT.SQRT (FLOAT(I))) GO TO 4
PRINT 105,1
10 CONTINUE
105 FORMAT (I4, 'IS PRIME.')
END

The cards used to enter this program are shown in Figure 5-3.

$EOQJ

END::! END OF JOB

$TOPS10

$EXECUTE

$ERROR.GOTO END

FORTRAN source program

$FORTRAN/LIST

$PASSWORD password

$JOB (27,5107]

Figure 5-3 FORTRAN Card Deck That Prevents Execution
on Error

EXAMPLES OF COMMON TASKS WITH BATCH

Batch puts the following commands into the control file as a result of
the cards you entered.

.COMPIL /COMP/F10 DSK:LNON3F.FOR/LIST
.IF (ERROR) .GOTO END

.EXECUT /REL DSK:LNON3F.REL

END:: !END OF JOB

.DELETE DSK:LNON3F.FOR,DSK:LNON3F.REL

Program output is as follows.

MAIN, LNON3F,FOR FORTRAN V,SA(621) /KI 2eAUGe78 13141 PAGE 1
00001 € THIS PROGRAM CALCULATES PRIME NUMBERS,
00002 DO 10 I®11,50,2

00003 Juy

00004 4 JnJe3

000083 AsJ

00006 ARI/A

00007 Le1/d

00008 BUA=L

00009 1F(B)S,10,9

00010 8 IF(J,LT,SQRT(FLOAT(I))) GOTO 4

00011 PRINT 10%,1

00012 10 CONTINUE

00013 108 FORMAT(14, * I8 PRIME,®")
00014 END

SUBPROGRAMS CALLED

SGRT,
FLOAT,

SCALARS AND ARRAYS ["#" NO EXPLICIT DEFINITION e "§" NOT REFERENCED)

*B 1 *J 2 ah 3 +30000 ¢ 138]
+1 6

TEMPORARIES
,Q0000 13
MAIN, [NO ERRORS DETECTED)

11 IS PRIME,
13 IS PRIME,
17 18 PRIME,

19 IS PRIME,
23 IS PRIME,
29 IS PRIME,
31 IS PRIME,
37 1S PRIME,
41 Is PRIME,
43 1S PRIME,
47 18 PRIME,

The log

13138158
1331368158
13138358
13139301
13139:01
13139101
13139101
13139101
13139101
13139101
1313901

13141151
13141151
13141151
13141151

13141327
13141127
13141127
13341127

13141127
13841127
13141129
13141131
13041138
13141132
13141332
131411234
131411943
13141144
13141144
13141144
13141144
13841148
13141147
13141148
13141148
13141148
13141348
13841148
13341148
13141148

13141148
13141148
13841149
13141349
13141149
1314115%0
13141150
13141350
13141150
13141150
131411%0

EXAMPLES OF COMMON TASKS WITH BATCH

file produced by the job is shown below.

STDAT
STCRD
S8TCRD
STMSG
STCRD
STCRD
STCRD
STCRD
ST8UM
STSUM
STSUM

MONTR
MONTR
MONTR
MONTR

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
USER
MONTR
MONTR
FALSE
MONTR
USER
USER
USER
USER
USER
MONTR
MDNTR
MONTR
BLABL

BLABL
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER

2°AUG=18 RKIATA KL1O BYS#1026 SPRINT Versgion 102(2024)
$JOB [27,5107) '
$FORTRAN/LIST

File DSKJILNON3IF FOR Created « 14 Cards Read = 2 Blocks Written
$ERROR ,GOTO END

SEXECUTE

$TOPS10

skoJ

End af Job Entouptered

22 Cards Read

Batech Input Request Creaced

Job 49 User BROWN,E (27,%107)

Loggadeoft TTYS11 at 13341151 on 2e«Auge7s
Runtimey 03100101, KCSt25, Conneet times 0100123
Disk Reads! 127%, Writesy3!

BATCON version 102(2067) running JBONJIE sequence 1256 in stream |
Inpue from DSKCILJRONIE,CTL(27,3107)

Output to DSKCIJBONIE,LDGI27,%107)

Job parameters :

Tirey0030%5300 uniquetyrs RestartiYES outputL.OG

+LOGIN 27/5107 /DEFER/SPOOLJALL/TIME1300/LOCATE126/NAME"BROWN,E"

Joeg 49 RK3IATA KL10 SYS#1026 TTYS1)
[LGNJSP Other Jobs same pPNj21)
1341 ND2eAuge?8 wed

++COMPIL /COMP/F10 DSKJLNON3F,FOR/LIST
FORTRANg LNONJIF
MAIN,

]

+IF(ERROR) ,GOTO END
JEXECUT /REL DSKjLNON3F REL
LINK; Loading

[LNKXCT LNON3F Execution)

END oF EXECUTION
CPU TIMES 0,04 ELAPSED TIME§ 0,37
EXIT

[

END1y

{END OF JOB
SERR}

$FINg:

+VELETE DSKILNONIF ,FOR,DSKILNONIF ,REL
Fileg deleted:
LNON3F FOR

02 Blocks treed
LNON3F ,REL

N2 Blocks freed

XJOB/BATCH

(LGTAJL Anothel job 18 st:ll logged=in uUnder (27,%51071}])

EXAMPLES OF COMMON TASKS WITH BATCH
COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tape
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The TMOUNT command assigns
the drive to your job and associates the logical name that you specify
with the physical drive assigned. The TMOUNT command also informs the
operator of the name or ID number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the central site before you submit your job.) The program
is as follows.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT OUTFIL ASSIGN TPDRIV.

DATA DIVISION,

FILE SECTION.

FD OUTFIL LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS "INFIL DAT"
DATA RECORD IS OUTREC .
BLOCK CONTAINS 20 RECORDS.

01 OUTREC PIC X(80).

WORKING-STORAGE SECTION.

77 A PIC 9999 USAGE IS COMP.

PROCEDURE DIVISION.

START.

OPEN OUTPUT OUTFIL.
MOVE ZEROS TO OUTREC.
MOVE 1000 TO A.
LOOP.
WRITE OUTREC.
SUBTRACT 1 FROM A.
IF A IS GREATER THAN ZERO GO TO LOOP.
CLOSE OUTFIL.
STOP RUN.

The cards to enter this job are shown in Figure 5-4.

EXAMPLES OF COMMON TASKS WITH BATCH

$EOJ

'END OF JOB

.DISMOUNT MAG1

$TOPS10

SEXECUTE —

COBOL source pragram |

$COBOL

MOUNT MTB:MAG1/REELID:SCRTCH/WENABLE

-PLEASE MOUNT A SCRATCH TAPE" |

$TOPS10

SPASSWQRD password

$J0OB [27,6107] _J

Figure 5-4 COBOL Program Card Deck Using Data From Magnetic Tape

Batch puts the following commands into the control file for you.

.PLEASE MOUNT A SCRATCH TAPE" [

.MOUNT MTB:MAGl/REELID:SCRTCH/WENABLE
.COMPIL /COMP/COB DSK:LNON3H.CBL/LIST
.EXECUT /REL DSK:LNON3H.REL

.DISMOUNT MAG1:

.DELETE DSK:LNON3H.CBL,DSK:LNON3H.REL

The log file from your job is shown on the following page.

13139104
133139104
13139304
13139104
13139110
13339110
13839110
13139110
13139110
13839110
1313991

13341152
13141192
13141152
133841152

1314152
131411892
13141153
13142100
13142400
13142301
13142101
13142101
13142101
13142102
13142103
13142124
13142124
13142124
13142128
13142138
13142138
13142138
13142138
131421236
13142338
13142140
13142940
13142140
13142440
13142440
13142141
13142341
13142141
13142141
13142141

13142341
13142341
13142141
13142142
131423472
131421472
13142142
13142142
13142142
13142142
13142142
13142343
13142143
13142143
13142151

STDAT
STCRD
STCRD
STCRD
STMSG
STCRD
8TCRD
STCRD
ST8UM
STSUM
STSUM

BAJOB
BAFIL
BAFIL
HASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
BATCH
MONTR
USER
USER
USER
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USEFR
USER
USER
USER
USER
MONTR
USER
USER
USER
USEPR
MONTR
MONTR

BLABL
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
USER
USER
MONTR
MONTR
MONTR
MONTR

EXAMPLES OF COMMON TASKS WITH BATCH

2=AUGeT8 RKIATA KL3O 8YS#1026 SPRINT Version 103(2024)
$JOB (27,5107}

$TOPS10

$COBOL

File DSKILNON3H,CBL Croqgcd » 25 Cards Read = 4 Blo€k written
SEXECUTE

8THPS10

sE0Y

End of Job EnCountered

36 Cards Read

paten Input Request Created

BATCoN version 102(2067) running JBON3IG gequence 1257 in streanm |
Input trom DSKC3JBONIG,CTLI27,5107)

Qutput to DSKCIJBONIG, uﬂc(27.51071

JOb parameters

Timey00305300 UniqueyYps RegtaytiYES DytputLOG

«LOGIN 27/5107 /DEFER/SPOOLIALL/TIMES300/LUCATES26/NAMEL"BROWN,)E"

JUB 49 RKIATA KL10 8YS#1026 TTYS11
[LGNJSP QOther jobs same PPN121)
1341 02«2UQe78 weao

[

+PLEASE MOUNT A SCRATCH TAPE®™!

JMOUNT MTBYMAGY /REELID 3 SCRTCH/WENABLE
Request queued

wagting,,,2 "C’s to Exit

MAG1 moynted, MTB264 used

+oCOMPIL /COMP/COB DSKJLNONIH,CBL/LIST
CUBDL:T MAIN [LNONJIH,CBL)

EXIT

++EXECUT /REL DSK1LNON3IH, REL
LINK; Loading
(LNKxCT LNONIH Execution)

EXI1T

+««DISMOUNT MAGL}

[MTB2641SCRTCH WRITE(C/H/8) » 75130/0/0]
Request queued

waiting,,,2 “C®s to Exit

MTR264 Dismounted

.

JEND OF JOB

AERRy

SFINpS

JELETE DSKILNON3IH,CBL,DSKILNONIH REL
Filleg deleted:

LNON3H ,CBL

04 Blocks freed

LNONYH,REL

03 Blocks freed

,KJOB/BATCH

[LGTAJL Anotherl job (8 still loggedein under [27,8107})
Job 49 yUser RBROWN,E [27,%5107)

Loggedmotf TTYS511 at 13142143 on 2eAuge’s

Ryntymey 0300302, KCSt33, Connect tlmil 0100831

Disgk Readsi1168, Writesgry18

Term

ALGOL

Alphanumeric

ASCII Code

Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch Processing

Card

GLOSSARY

Definition

ALGOrithmic Language. A scientifically oriented
language that contains a complete syntax for
describing computational algorithms.

Any of the letters of the alphabet (uppercase A
through 2 and 1lowercase a through z) and the
numerals (0 through 9).

American Standard Code for Information
Interchange. 1Its 7-bit code is used to create a
series of alphanumeric or special symbols.

To prepare a machine-language program from a
symbolic-language program by substituting
absolute operation codes for symbolic operation
codes and absolute or relocatable addresses for
symbolic addresses.

A program which accepts symbolic code and
translates it into machine instructions, item by
item. The assembler for TOPS-10 is called the
MACRO assembler.

The machine-~oriented symbolic pProgramming
language. The assembly language for TOPS-10 is
MACRO. MACRO statements are equivalent to one
or more machine instructions.

A printed list which 1is the byproduct of an
assembly run. It lists in logical-instruction
sequence all details of a routine showing the
symbolic notation next to the actual
instructions generated by the assembler.

Beginner's All-purpose Symbolic Instruction
Code. A timesharing computer programming
language that is used for direct communication
between terminals and computer centers. BASIC
employs English-like terms, is relatively easy
to use, and has a wide range of applications.

The technique whereby a computer executes one or
more programs in your absence.

A punched card with 80 vertical columns
representing 80 characters. Each column is
divided into two sections, one with character
positions labeled 0 through 9, and the other
with positions 11 and 12. The 11 and 12
positions are not labeled and are also referred
to as the X and Y zone punches, respectively.

Glossary-1

Term

Card Column

Card Field

Card Row

Central Processing
Unit (CPU)

Character

COBOL

Command

Compile

Compiler

Computer

Computer Operator

Continuation Card

Control File

CPU

Definition

One of the vertical lines of punch positions on
a punched card.

A fixed number of consecutive card columns
assigned to a unit of information.

One of the horizontal lines of punch positions
on a punched card.

The portion of the computer that contains the
arithmetic, logical, control, and I/0 interface
circuits.

One symbol of a set of elementary symbols such
as those corresponding to the keys on a
typewriter. The symbols wusually include the
decimal digits 0 through 93, the letters A,a
through Z,z, punctuation marks, a space,
operation symbols, and any other special symbols
which a computer may read, store, or write.

COmmon Business Oriented Language. A high-level
source language widely used in business and
commercial applications.

An instruction that causes the computer to
execute a specified operation.

To produce a machine- or intermediate-language
routine from a routine written in a high-level
language. A high-level language “is
user-oriented and one in which single statements
may result in more than one machine-language
instruction, e.g., FORTRAN, COBOL or ALGOL.

A system program which translates a high-level
source language into a language suitable for a
particular machine. A compiler converts a
source-language program into intermediate- or
machine-language. Some compilers used on
TOPS-10 are: ALGOL, COBOL, FORTRAN.

A device with self-contained memory capable of
accepting information, processing the
information, and outputting results.

A person who has access to all software elements
of a system and performs operational functions
such as: loading a tape transport, placing
cards 1in the card reader input hopper, removing
printouts from the printer rack, etc.

A punched card which contains information that
was started on a previous punched card.

The file made by you that directs Batch in the
processing of your job.

See Central Processing Unit.

Glossary-2

Term

Cross-Reference
Listing

Data

Debug

Disk

Execute

File

Filename

File Extension

FORTRAN

Job

Label

Log File

MACRO

Mounting a Device

Definition

A printed listing that identifies each reference
of an assembled program with a specific label.
This 1listing is provided immediately after a
source program has been assembled.

A general term used to denote any or all
numbers, letters, and symbols, or facts that
refer to or describe an object, idea, condition,
situation, or other factors. It represents
basic elements of information which can be
processed or produced by a computer.

To locate and correct any mistakes in a computer
program.,

A form of a mass-storage device 1in which
information is stored in named files.

To interpret an instruction or set of
instructions and perform the indicated
operation(s).

An ordered collection of 36-bit words composing
computer instructions and/or data. A file can
be of any length, limited only by the available
space on the storage device and your maximum
space allotment on that device.)

A name of 1 to 6 alphanumeric characters chosen
by the user to identify a file.

A string of 1 to 3 alphanumeric characters,
usually chosen to describe the kind of
information in a file. The file extension must
be separated from the filename by a period,
e.g., FORO1.DAT.

FORmula TRANslator. A procedure-oriented
programming language that was designed for
solving scientific problems. The 1language is
widely used in many areas of engineering,

mathematics, physics, chemistry, biology,
phychology, industry, the military, and
business.

The entire sequence of tasks performed between
login and 1logout at an interactive terminal,
with a card deck, or at an operator's console.

A symbolic name used to identify a statement in
the control file or in a magnetic tape file or
in a volume.

A file into which Batch writes a record of your
entire job. This file may be printed as the
final step in Batch's processing of a job.

See Assembly Language.

A request to assign an I/0 device via the
operator.

Glossary-3

Term

Object Program

Password

Peripheral Device

PPN

Program

Programming

Project-Programmer
Number

Queue

Software

Source Deck

Source Language

Source Program

System

Definition

The program which is the output of compilation
or assembly. Often the object program is a
machine-language program ready for execution.

The secret word assigned to you that, along with
your project-programmer number, uniquely
identifies you to the system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside storage or communication.

See Project-Programmer Number.

The complete sequence of machine instructions
and routines necessary to resolve one or more
computational tasks.

The science of translating a problem from its
physical environment to a language that a
computer can understand and obey; also, the
process of planning the procedure for solving a
problem. This may involve, among other things,
the analysis of . the problem, preparation of a
flowchart, coding of the problem, establishing
input-output formats, establishing testing and
checkout procedures, allocation of storage,
preparation of documentation, and supervision of
the running of the program on a computer.

Commonly referred to as PPN, these two numbers
separated by a comma (,) identify you and your
file storage area on a file structure.

A list of jobs to be scheduled or run according
to system-, operator-, or user-assigned
priorities. For example, the Batch input queue
is the list of jobs to be processed by Batch.

The totality of programs and routines used by a
computer. Examples include compilers,
assemblers, operator programs, service routines,
utility routines, and subroutines.

A card deck that constitutes a computer program
in symbolic language.

The original form in which a program is prepared
prior to 1its processing by the computer to
produce the object-language program.

A computer program written in a language
designed for humans to use to express procedures
or problem formulations. A translator
(assembler, compiler, or interpreter) is used to
translate the source program into an object- or
machine-language program that can be run on a
computer.

The collection of programs which schedules and
controls the computing facility.

Glossary-4

Term

System Command

System Program

Terminal

Definition

An instruction to the system to perform an
operation. The system commands for the TOPS-10
are described in the DECsystem-10 (TOPS-10)
Operating System Commands Manual.

A program generally available to users,
administrators, or operators for performing some
specific function. Examples are a FORTRAN
compiler or a text editor.

A device containing a keyboard, similar to a
typewriter, and a printing or display mechanism
employed to establish communications with a
computer.

Glossary-5

INDEX

character, 2-3, 3-2

character, 3-2

character, 2-10

character, 2-3, 3-2

character, 3-2

character, 2-3, 3-2

character, 2-11, 2-12,
3-4

= character, 2-3

"C characters, 2-4

“[characters, 2-4

I % 0P < e

$-language card, 3-1, 3-7,
3-8

$-language card examples,
3-9

/AFTER: switch, 2-6, 3-3
ALGOL, Glossary-1
$ALGOL card, 3-7, 3-8
ALGOL example,

card, 5-10

$DATA, 3-14, 3-15, 3-16

terminal, 5-1, 5-2, 5-3
Alphanumeric, Glossary-1
ASCII Code, Glossary-1
Assemble, Glossary-l
Assembler, Glossa-y-1
Assembly Language, Glossary-1l
Assembly Listing, Glossary-1

.BACKTO command, 2-12
.BACKTO label, 2-12
BASIC, Glossary-1
BASIC example,
card, 5-11, 5-12, 5-13
terminal, 5-4, 5-5
BASIC program card deck,
3-24, 3-25
Batch,
commands, 2-8

common tasks with, 5-1,
5-10

control card commands,
3-2

definition, 1-1

how to use, 1-2

output, 4-1, 4-2

submitting the job to,
2=-5

Batch jobs,
cards, 3-1
terminal, 2-1
Batch Processing, Glossary-1

Card, Glossary-1 -
$-language, 3-1, 3-7, 3-8
SALGOL, 3-7, 3-8
$COBOL, 3-7, 3-8
SCREATE, 3-1, 3-5, 3-6
$DATA, 3-1, 3-10, 3-11
$EOD, 3-1, 3-16
$EOJ, 3-1, 3-5
$ERROR, 3-1, 3-1
SEXECUTE, 3-1, 3
SFORTRAN, 3-7, 3
$JoB, 3-1, 3-2,
$MACRO, 3-7, 3-8
SNOERROR, 3-1, 3
SPASSWORD, 3-1
$TOPS10, 3-1, 3-1 3-17

Card ALGOL example, 5-10

Card BASIC example, 5-~11,

5-12, 5-13
Card COBOL example,
5-17, 5-18, 5-19

Card Column, Glossary-2

Card deck,

BASIC program, 3-24,
program, 3-20, 3-21
setting up your, 3-20,

5-16,

3-25

3-21
using GOTO statement,
3-30, 3-31
using TOPS-10 commands,
3-18
Card decks for programs,
3-23

Card Field, Glossary-2
Card format conventions,
3-2
Card FORTRAN example,
5-15
Card job,
output from a, 4-4, 4-5
Card-reader file,
reading from, 3-12
Card Row, Glossary-2
Cards,
control, 3-22
control file from, 3-21
enter jobs with, 3-1,
5-10 to 5-18
nonspecial control, 3-23

5-14,

Index-1

INDEX (Cont.)

Central Processing Unit,
Glossary-2

Character, Glossary-2
1, 2-3, 3-2

* 0P LN

a[r 2-4
COBOL, Glossary-2
$COBOL card, 3-7, 3-8
COBOL example,
card, 5-16, 5-17, 5-18,
5-19
$DATA, 3-12, 3-14
terminal, 5-7, 5-8, 5-9
Command, Glossary-2
.BACKTO, 2-12
.ERROR, 2-9, 2-10
.GoTo, 2-11, 2-13
IF, 2-9
.IF (ERROR), 2-9
.IF (NOERROR), 2-9
.NOERROR, 2-10, 2-11
SUBMIT, 2-5
Commands,
Batch, 2-8
Batch control card, 3-2
in the control file,
3-21
system, 3-16
TOPS-10, 2-2, 3-18
Common tasks with Batch,
5-1, 5-10
Compile, Glossary-2
Compiler, Glossary-2
Compiling a program, 3-7
Computer, Glossary-2
Computer Operator, Glossary-2
Continuation Card, Glossary-2
Control card commands,
Batch, 3-2
Control cards, 3-22
Batch, 3-2
nonspecial, 3-23
Control file, Glossary-2
commands in the, 3-21
creating a, 2-1, 2-2,
2-3, 3-21
error recovery, 3-26
example, 2-13
file format, 2-3
from cards, 3-21
Control-filnam.ext, 2-5

Conventions,
card format, 3-2
in this manual, v
CPU, Glossary-2
$CREATE card, 3-1, 3-5, 3-6
SCREATE examples, 3-7
Creating a control file,
2-1, 2-2, 2-3, 3-21
Creating a card file,
3-5, 3-6
Cross—Reference Listing,
Glossary-3

Data, Glossary-3
executing with, 3-10
$DATA ALGOL example, 3-14,
3-15, 3-16
$DATA card, 3-1, 3-10, 3-11,
3-14
$DATA COBOL example, 3-12,
3-14
SDATA examples, 3-11
Data files,
naming, 3-14
$DATA FORTRAN example, 3-13,
3-15
Data input,
terminal, 3-25
Debug, Glossary-3
Disk, Glossary-3

End-of-data input, 3-16

Ending a job, 3-5

Enter jobs through terminal,
2-1, 5-1 to 5-9

Enter jobs with cards, 3-1,
5-10 to 5-18

$EOD card, 3-1, 3-16

$EOJ card, 3-1, 3-5

SERROR card, 3-1, 3-18, 3-19

.ERROR command, 2-9, 2-10
Error recovery, 1-3, 3-18,
3-19, 3-27, 3-31

Error recovery,
control file, 3-26
program, 3-28, 3-29
specifying, 2-12, 2-13,
2-14, 3-26
.ERROR statement, 3-26
Example,
card ALGOL, 5-10
card BASIC, 5-11, 5-12,
5-13
card COBOL, 5-16, 5-17,
5-18, 5-19

Index~-2

Example (Cont.)

card FORTRAN, 5-14, 5-15%

control file, 2-13, 2-14

$DATA ALGOL, 3-14, 3-15,
3-16

$DATA COBOL, 3-12, 3-14

$DATA FORTRAN, 3-13, 3-15

terminal ALGOL, 5-1, 5-2,
5-3

terminal BASIC, 5-4, 5-5

terminal COBOL, 5-7, 5-8,

5-9
terminal FORTRAN, 5-6
Examples,
$-language card, 3-9
SCREATE, 3-7
$DATA, 3-11

Examples of submitting jobs,

2-7, 2-8
Execute, Glossary-3
SEXECUTE card, 3-1, 3-9
Executing a program, 3-9
Executing with data, 3-10

File, Glossary-3

creating a card, 3-5, 3-6
File-control switches, 2-5,

2-7

Filename, Glossary-3
Filename.ext, v, 3-6, 3-11
File extension, Glossary-3
Format,

control card, 3-2

control file, 2-3
FORTRAN, Glossary-3
$FORTRAN card, 3-7, 3-8
FORTRAN example,

card, 5-14, 5-15

$DATA, 3-13, 3-15

terminal, 5-6

General switches, 2-5, 2-6
.GOTO command, 2-11, 2-13
.GOTO label, 2-11, 2-12

GOTO statement, 3-30, 3-31

How to use this manual, iii

How to use Batch, 1-2

.IF command, 2-9
.IF (ERROR) command, 2-9

INDEX (Cont.)

.IF (NOERROR) command, 2-9

.IF statement, 3-19

Interpreting your output,
4-1, 4-2

Job, Glossary-3

ending a, 3-5

output from your, 4-1

running your, 1-2

starting a, 3-2, 3-3
$JOB card, 3-1, 3-2, 3-3
Job to Batch,

submitting the, 2-5
Jobname, 2-5

Label, Glossary-3, 2-12
.BACKTO, 2-12
.GOTO, 2-11, 2-12
Lines,
format of control file,
2-3
Log file, Glossary-3
Log-filnam.ext, 2-5

MACRO, Glossary-3

$MACRO card, 3-7, 3-8

/MAP switch, 3-10, 3-11

Mounting a device,
Glossary-3

Naming data files, 3-14
$NOERROR card, 3-1, 3-18,
3-19 ‘

.NOERROR command, 2-10,
2-11

/NOLIST switch, 3-8

Nonspecial control cards,

Object Program, Glossary-4

Output,
Batch, 4-1, 4-2

from a card job, 4-4, 4-

3-23

5

from a terminal job, 4-2,

4-3
interpreting your, 4-1
receiving your, 1-3
sample Batch, 4-2

Index-3

/PAGE: switch, 2-6
/PAGES: switch, 3-3
Password, Glossary-4,
SPASSWORD card, 3-1,
Peripheral device,
Glossary-4
PPN, Glossary-4
/PRINT switch, 3-6
Printed output, 4-2
Program, Glossary-4
card decks for a,
3-21, 3-23
compiling a, 3-7
error recovery,
3-29
executing a, 3-9
Programming, Glossary-4
[proj,progl}, v, 3-3,
Glossary-4
Project-Programmer Number,
Glossary-4

3-5
3-5

3-20,

3-28,

Queue, Glossary-4
Queue-operation switches,
2-5

Reading from card-reader

file, 3-12
Receiving your output, 1-3
Recovery,
error, 1-3, 2-12 to 2-14,
3-18, 3-19, 3-26 to 3-31
Recovery program,
error, 3-28, 3-29

Running your job, 1-2

Setting up your card deck,
3-20, 3-21
Software, Glossary-4
Source Deck, Glossary-4
Source Language, Glossary-4
Source Language, Glossary-—4
Specifying error recovery,
2-12, 3-26
Spooled card-reader file,
3-12
Starting a card job,
3-3
Statement,
.IF, 3-19
SUBMIT command,

3-2,

2-5

INDEX (Cont.)

Submitting the job to Batch,
2-5
examples of, 2-7, 2-8
Ssummary of Batch process,

1-3
/SUPPRESS switch, 3-6, 3-9,
3-11, 3-17
Switch,
/AFTER:, 2-6, 3-3
/MAP, 3-10, 3-11
/NOLIST, 3-8
/PAGE:, 2-6
/PAGES:, 3-3
/PRINT, 3-6
/SUPPRESS, 3-6, 3-9, 3-11,
3-17
/TIME:, 2-6, 3-4
/WIDTH:, 3-6, 3-8, 3-11,
3-17
/switches, 2-5, 3-3, 3-6,
3-8, 3-11, 3-17

Switch categories,
file-control, 2-5,
general, 2-5, 2-6
queue-operation, 2-5

System, Glossary-4

System Command, Glossary-5

System commands, 3-16

System Program, Glossary->5

System program output, 4-1

2-7

Terminal, Glossary-5
enter jobs through,
5-1 to 5-9
Terminal ALGOL
5-2, 5-3
Terminal BASIC
5-5
Terminal
Terminal
5-8,
Terminal
Terminal
5-6
Terminal
output from a, 4-2
/TIME: switch, 2-6
TOPS-10 commands,
$TOPS10 card, 3-1,
3-17

example, 5-1,

example, 5-4,
Batch
COBOL
5-9

data input, 3-25
FORTRAN example,

jobs, 2-1

example, 5-7,

job,

, 4-3
, 3-4
2-2, 3-18
3-16,

/WIDTH: switch,
3-11, 3-17

3-6, 3-8,

Index-4

Please cut along this line.

Getting Started With
Batch (TOPS-10)
AA-D303A-TB

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
fornm.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
pPage number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

uooooo

Other (please specify)

Name Date
Organization Telephone
Street

City. State Zip Code

or
Country

: I || || I No Postage
. t Necessary
I‘ if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	glossary-1
	glossary-2
	glossary-3
	glossary-4
	glossary-5
	glossary-6
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB

